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Why study hybrid systems?

World is tull of complex interconnected systems

V
" Sophisticated software and

5 hardware onboard )

v

[Embeddefl systemsj

Continuous signals
+ discrete events
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Automotive industry

Cost of a car comes more than 30% from Electronics.

More than 80 microprocessors and millions of lines of code.

90% of tuture innovations will be based on electronic systems.

! e
Appllcatlon = 4 Cacaiver
Data Bus ,._
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Tratfic management
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Communications

The world is becoming wireless!

From main stream servers to personal devices (mobile phone, pda,...).

Shared and adaptive communications networks.
Heterogeneous hardware / software, mixed architectures.

New applications (toy industry, e-commerce, voip,...).
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Systems Biology

Understand the knowledge system level of a biological system.

Principles from control help understand biological systems.
Biological systems provide a rich source of examples for control.

Medical advances, new drugs, gene therapies, biomedical research.

endoplasmatic
reticulum

nucleus

CL.- #¢ :
o »
e~ D, ~ ichonts
lysosome




11|
Motivation...

Why study hybrid systems?

Modeling abstraction of a wide range of systems:

- Systems with phased operation (walking robots, systems with colisions)
- Systems controlled by discrete inputs (switches, valves, digital computers)
- Hierarchical coordinating systems (multi-agent)

Merge of computation + physics + communications, the core of
new technological innovations:

- Automated Highway Systems

- Air Traffic Management Systems
- Safety systems

- Biological systems
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Motivation...

Why study estimation and control of hybrid systems?

1) State estimation enables fault detection!

Detect critical Avoid error
situations propagation

2) Control algorithms require full state feedback!

Measuring 1s not
5 Observers are

economically feasible or
physically possible

needed

Rather complex and still partially unsolved problem



[. Modeling of hybrid systems

[I. Estimation of stochastic hybrid systems

[II. Optimal control of stochastic hybrid systems

[V. Experimental application

V. Conclusions and future developments




MODELING OF HYBRID SYSTEMS
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%

Finite state machines Continuous dynamical systems



Time-driven world

computer science control theory

Tends to abstract from the Tends to ignore computational
physical world limitations

4 )
Objective 1: descriptive enough to capture the system behaviour

Objective 2: simple enough for analysis and synthesis problems

J




® System can be in one of several modes (Discrete Mode).

® Each mode behavior described by difference/ differential equations.

® Switching between modes due to occurrence of events:
- external/internal signals, or system dynamics itself.




Modeling of hybrid systems
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Intrinsically hybrid systems...

Turn on the heat

off mode

T=-T

Hybrid dynamics:

=23

Turn off the heat




Modeling of hybrid systems

[ Discrete input + Continuous input + Continuous states

T

fuel, air

pressure, temperature, ...

~N

J




Modeling of hybrid systems
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Intrinsically hybrid systems...

Driving a motorcycle

Discrete input + Continuous input + Continuous states)

| | l
1,2,3,4 N

brakes, gas, clutch

velocity, torque, ...
J
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Representation of hybrid systems...

Piece-Wise Affine (PWA) Linear Complementary (LC)

SYSTEMS
MODELS

/
\

Mixed Logical Dynamic (MLD) Max-Min-Plus Scaling (MMPS)

\ HYBRID
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The Piece-Wise Affine (PWA) model

r(k+1) = Ajuy (k) + By w(k) + fi
i(k) =4 iff {ugk” c (),
y(k) = Ciry x(k) + Djey w(k) + gic)

i(k)eZ=1{1,...,s} CNT V,

Polytopes definition in the
input+state region:

S; x(k) + R; u(k) <T,

() is also a polytope.

Non-overlapping regions:
ik = 19 =
a—| 9

R
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A G
z(k+1) = Ay z(k) + Bru(k) + /1
y(k) = Crz(k) + D1 u(k) + g1

x(k+1) = Ay x(k) + Bau(k) + f2
y(k) = Cax(k) + D2 u(k) + g2

,
Discrete mode sequence

i—[1,2,3

\_

~N

J




' Modeling of hybrid systems
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The stochastic PWA model

v(k+1) = Ay x(k)+ By ulk) + Wigyw(k) + fir)
y(k) = Ciwk (k) + Diw) ulk) + gik) + v(k)
- x(k)
Q, = u(k) | : Siz(k) + Ryu(k) + Qw(k) < T;
| w(k) _
C JC ) C O Jc <
Uncertainty in the Uncertainty in

continuous state the discrete mode



' Modeling of hybrid systems
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Ana1y51s of a stochastic PWA model

4 )
Discrete mode sequence:

j=1[1,1,3

\_

Slight state deviation can
cause the system to
evolve with a different
mode sequence.




ESTIMATION OF STOCHASTIC HYBRID SYSTEMS




Estimation =@ (bservability = Injectivity

E\H\A

A given output sequence may

L2
E}X be produced by more than one
| gy, cRE

trajectory of the system

S

Y1 4 )
Observability is not a

global property for

_ general hybrid systems !




Estimation
of deterministic
hybrid systems

ESTIMATION OF
STOCHASTIC

HYBRID
SYSTEMS

The Interacting Multiple Model (IMM)

Observability
properties

Observability of
stochastic hybrid systems
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Problem formulation

| W /o
Given:
: k+1 k42 ]
x(k+1) = Aijx) (k) + Biwy + fi(k)
Knowing: y(k) = Cigy 2(k) + Digry T Ji(k)
Q0 2 {[ﬂ’f)}  Si(t) + Riullh)+ < Ti}
: z(t) — Continuous state evolution
Estimate:

(k) — Discrete mode sequence



Hybrid observer design

Deterministic
Hybrid System

»!

\_

(

Hybrid
Observer

i Methodology:
1) Guarantee Discrete Mode Observability.
_ 2) Guarantee Continuous Mode Observability.




A

i

kE+1

k41T —2

kE+T1—1

Time compressed model over the size window 1

Ai ) x(k) -

Ci k) x(k) -
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Estimation of deterministic hybrid systems

-

Matrix definitions...




Discrete Mode Observability

(" )
A PWA system is Mode Observable iff for any pair of feasible hybrid

trajectories: . .
(mia UT7 IT) 9 (x,ja UT?JT)

the following holds:
17 # jT — Y(.fl?i, UT? 0,0, iT) # Y(aj,]) UT? 0, OajT)

i.e., there is no overlapping between both output feasibility polytopes:

\_

Discrete Mode Separability of the outputs for

Observability different discrete mode sequences
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Discrete mode observability: injectivity in the mode

Q1

= e

o g

= 1918
Y|

e O

ma

Eerr iy

[ Discrete mode sequences j3 and k3 are not observable from y(k). j
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Example: deterministic PWA system with 2 modes

r(k+1) = —=05z(k)+ u(k) r(k+1) = —x(k)+ u(k)
y(k) = x(k)\ y? = x(k)—0.5
=) 0 ” > z(k)
defined in the polytopic region: wu(t)
v(k) € X2[-2,2 -
uwk) € US[-1,1]| A 2 a(t)




—0.5x(k) + u(k) r(k+ 1)
z(k) y(k)

—x(k) + u(k)
r(k) — 0.5

3 {

0

Output feasibility polytopes for T =1:

\

2 -2 -1

‘The mode is not observable

(B 1 2

from the output

& J
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' Observability of deterministic hybrid systems

z(k + 1) —0.5x(k) + u(k) z(k+ 1) —z(k) + u(k)
x (k) y(k) r(k) — 0.5

3 {

0
Overlappmg output reglons for T =2:

ip = [1 2] | je=0121

1k

0.51

VS

=<
\/0,

S

-0.5¢

(The mode is not observable
from the output

U J




Continuous State Observability

~N

‘APWA system is Pathwise Observable iff there exists a finite horizon
T such that all feasible discrete mode sequences {i(0),...,i(T — 1)}
are observable, i.e.:

e )

Ci, Aig
rank(Cj,.) = rank Ciy Aiy Aig

1T

\ C’L'T_lA’l:T—; Ay A /

The smallest value for T, Tpyi- , is the index of the PWO.

.

The observations: Uniquely CCElls’termme;
0),....y(T —1 —
Wl L for every admissible DMS.
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= Cl
rank Cl Al

| CiA]

[111]

)]

C1
Co A

e

[121]

) = rank

Co
C1As
CaAs A4

Cedin
D122

]

(How to find the smallest value for I that is enough to prove pathwise observability ?)
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Continuous State Observability

A PWA system is State Observable ift:

= System is Pathwise Observable with index PWO (T = Ty 0 ):

|

Unique determination of o when the DMS of length Tpw o is known.

= System is Mode Observable at 1'pyyo:

|

Unique DMS 1., , produces the measured outputs.




Given:

Knowing:

Estimate:

/i >
z(k +1 Ay o(k) + Biry ulh) + Wigyw(k) + ficr)
y(k) Citky (k) + Dixy + gik) + 0(k)
- a(k)
(2; Szfc(k) + R; + sz(k) < 7;
w(k)
z(k) Continuous state evolution
i(k) Discrete mode sequence
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The time compressed stochastic model

Xr(k) = Aipzw) z(k) + Bip + Wiy W (F) + £ (k)
Yr(k) = Ciax(k) + Dy k) + 8ir (k) + Lip ) Wr (k) + Vr(k)
(T ek
;. = . Si (k) + Ry, + Qi Wr(k) < Ty,
| Wr(k)(k)

1) The hybrid trajectories X (k) are characterized in probability.

2) Several DMS ip are candidate to have produced a given measurement
sequence, although some with a higher probability than others.



Discrete Mode Observability in Probability

= Measured output

4} Probabiiy 6t Y b= 108
<| Probability of Y3, j3=|1 1 3]

Y5]

%ﬂﬂ

[Which DMS i3 or j5 is more likely to have produced Y; ?]




Discrete Mode Observability in Probability

For a given fixed input and output data sequences:

(UT7 YT)
Find the DMS with the highest probability of matching(Ur, Yr)
i (Yr, Ur, Jr)

fixed Set of admissible
DMS with length I’

‘Mode Observability is given in probability!\
No longer a YES/NO answer!

\_ J




Discrete Mode Observability in Probability

DMS least squares estimator:

i7(Yr, U, Jr) = arg. min ||V =, (Ur)|*

DMS maximum likelihood estimator:

/i\?} (YT7 UT7 jT) — arg quPEa}{T PI’(YT = j}JT (UT))

System is Mode Observable
kWith at least probability Paso,




' Observability of stochastic hybrid systems
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(k+1) = —-0.5x(k)+ u(k) r(k+1) = —x(k)+u(k)
y(k) = xz(k)+v(k) y(k) = x(k)—05+v(k)
v(k) € Vi £[-02, 0.2] v(k) € Vy=[-05, 0.5]
—2 0 2 };(k)
defined in the polytopic region: tu(t)
v(k) € X2[-2, 2 -
uk) € US[-1,1]| . e b




' Observability of stochastic hybrid systems

r(k+1)
(k)
)

‘The mode is not observable

from the output

& J




' Observability of stochastic hybrid systems

ip = [1 1]

>
- Ll




' Observability of stochastic hybrid systems

iy = [1 1]

i = [2 1




Continuous State Observability

In order to guarantee Pathwise Observability:

Uniquely determine:

The observations:
# L0
. T —1
W0, u )} for every admissible DMS.

@ The same condition as for the deterministic case.

@ But all in probabilistic terms...




Continuous State Observability in Probability

A PWA system is State Observable with a given probability iff:

= System is Pathwise Observable with index PWO (T = Ty 0 ):

|

Unique determination of X in a least squares sense when
the DMS of length T'pyw o 1s known.

= System is Mode Observable with probability Pjo:

|

Ohas the highest probability of being the correct mode estimation.

o
17Tp

J
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Problem formulation

L
Past time |
<
|
/\WW)
k k—+1 k+T1—2 k+T—1

Present time

[Objective: estimate Z(¢) and the current discrete mode i(t)]




(Observabilit);
_ properties

J

Present time

A )
Discrete mode sequence: 17

Continuous time sequences:

Tip (K|t) , wip (K]t) , 05 (KE)




General Estimation Problem

Find from(all possible) DMS J :

Example: 4 @ Number of modes: 3

@ Data sequence dimension: 4

\

[ Possible DMS: 3% = 81]




General Estimation Problem

Find from(all possible) DMS J :

Example: @ Number of modes: 6

@ Data sequence dimension: 4

\

[Possible DMS: 1296 ]




' Estimation of stochastic hybrid systems

General Estimation Problem

Find from all possible DMS jT°
Q[Estimations: i (k|t), Wi (klt), Vi (k[t) J

@ Such that:

~N

.18 minimized
>
JT

J

@ Subject to the following constraints:

R A

:
Dynamic model: Yy (klt)=C;,.(k)+Dj, Ur(k)+g;j, +Lj, Wi, (k)+Vj, (k)
Region bounds: S; (k) + R Ur(k) +Q; W; < T;

Disturbance bounds: HWJTW (k) <h;_, Hy, V; (k) < h;

S JT Jr JdT JT




General Estimation Problem

Solution of a Constrained Least Squares Optimization:

2, (k[t)

W, (k|t) +K; (k|t) ({
Vi (RlE) 1L i

h
h;

I

e

H;

|

) C/{jjT (k’t_l) ]

_ ‘/}:]T(k’t_]') i

Previous solution
at time instant t —1




' Estimation of stochastic hybrid systems

General Estimation Problem

Solution of a Constrained Least Squares Optimization:

Dynamtc model

> (k|t)— UT(k) Z
T R

JT il

Region bounds \ Disturbance bounds




General Estimation Problem

Solution of a Constrained Least Squares Optimization:

() ), (K- b, (K[t =1) ~

W, (ke | = | Wy, (ke ( b |1 e 1w (kle-1)
Vol | LV k- RNk |

(I2: =1 0 D
K; (k|t)= 0 Sw, 0
S o) S

. : ‘J Active set
Covariance matrix

constraints matrix




General Estimation Problem

Solution of a Constrained Least Squares Optimization:

oy, (k) ][, (k=) "y, (Klt-1)

h
Wi, (ko) | = | Wi, (klt=1) | +K; (ko) | | 2 |=] 52 || Wi, (klt—1)
VLGl LV (Rle-1) ({ . } {H ] VL (kle-1)

Complex and time-consuming optimization!

~

The Interacting Multiple Model

\_ J




Estimation of stochastic hybrid systems
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The Interacting Multiple Model

\_ J

® st step: unconstrained least squares optimization

For all possible DMS: ] -

Q(Find: & (K|t . Mﬂt) ,Nﬂt) )

@ Such that:

N 2
[ YJ; (k|t) — YT(]‘C)‘ 5118 minimized]

YiT

@ Under to the following constraints:

[Dynamic model: YJ; (klt)=C;.. (k)+D; Ur(k)+g;.,

Region bounds:

Disturbance bounds:
\_




(" )

The Interacting Multiple Model

\_ J

® st step: unconstrained least squares optimization

[ 5, (k[t) =5, (klt = 1)+K;, (klt — 1) [Yr (k)= Y} (kl1)] ]

Advantage: fast optimization.

Concern: some DMS ] admit unfeasible state trajectories Z;, . (k)
if region bounds were to be considered.




® 2nd step: ranks the DMS according to the optimization error

-

~N

~ 2
qmm;an:%

Ascending order:

6@1 <€y’2 <<€u,n
-]T JT -]T




Estimation of stochastic hybrid systems
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® 3rd step: constrained least squares optimization

DMS Error

« 4
JT Solve constrained

least squares
\

For the DMS: JlT

Q(Find: By (), Wi (k[t), V; (/c|t))

1 1
T T

@ Such that:

A 2
U }/;}; (k"t) — YT(k')| is minimizedj

@ Subjecto to the following constraints:

. . -
Dynamic model: YJTT(Mt) =C.. (k)+D,, Ur(k)

Region bounds: Sﬁ_p(k) + Rj1T Ur(k)

Disturbance bounds: Hyy , W.1 (k) <
\ v J7T




Estimation of stochastic hybrid systems
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® 3rd step: constrained least squares optimization

4 R
Solve constrained

least squares
- J

4 )
Computes the least

squares error
\_ 4

U C U
€j%<€j%<€j§z

Pair (JlT,eJC%F ) is relocated




' Estimation of stochastic hybrid systems

4 R
Solve constrained

least squares
- J

(> £)
Computes the least

squares error
\_ 4




it

e
JT

jr

it

4

JT

Jr

Lo

-

\_

Z
Solve constrained

least squares
J

(

\_

Computes the least
<

\

squares error
J

% 2
s = V2 (klt) - YT(k)H




. 1 T
JT s " ; )
% : Solve constrained

‘]g least squares
: : \- J
JT

o1
JT
4

JT squares error
. . \ J

% 2
. = |19z (klt) - Yr(h)|

Lo

4 %)
Computes the least
<

i1

~

. 4
Process stops when j is i Optimal solution

already a constrained solution 5 found! ’




OPTIMAL CONTROL OF
STOCHASTIC HYBRID SYSTEMS
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Optimal control of stochastic hybrid systems
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Problem formulation

® Move in N steps from:

(2(0) — x5
® Uncertainty in the state:
(w(k) e W
z(k) € X

g, ® Relaxation:

> 0. (X — X))

and apply RHC.

J

4 - = . d
: the optimal DMS of length N: i,
Find: prm 5 Y
. the N optimal control moves:




Optimal control of stochastic hybrid systems

® Find: {in,uy}
® Resulting from:

4 )
k+N—1

' ' t\k)—a(t|k t\k)—
g{m®( min (k)= a(tlh)| +|u(t]k) uf)}
uN €U\ z(k)e X, t=k

. J

4 )
For the worst case scenario

of disturbances affecting = (k)

\_ J




'O Optimal control of stochastic hybrid systems

o Find: {i\, uy}

® Resulting from:

-

k+N—1

ar min\ max min ||x(t|k tlE |+ u(tlk) —u

g { /min (MW( min (k) —a(t k)] + ) f\)
uN €U |z (k)€ Xy, k

~N

J

N

Minimize with respect to:

i(k)...i(k+ N —1)

u(k)...u(k+ N —1)




'O Optimal control of stochastic hybrid systems

o Find: {i\, uy}

® Resulting from:

4 )

k+N—1
arg{min max ( min ||z(t|k)—a(t|k) +u(tk)uf)}

ineZ w(k)eW a(t|k)eXy

uN EU g (k)€ X, t=k
N y

|

4 )
Minimum distance between the state

_ and the auxiliary variable a(¢|k) € Xy




Optimal control of stochastic hybrid systems

® Find: {in,uy}

® Resulting from:

4 )

k+N—1
arg ¢ min max min ||x(t|k)—a(t|k)|
ineZ w(k)eW a(tlk)eXy
upn eU x(k)E Xy t==k

. J

4 )
The state reaches steady state

nominal input: u(k|t) =u I

-




Optimal control of stochastic hybrid systems

o Find: {i\, uy}

® Resulting from:

4 )

k+N—1
arg{min max ( min m(tk)a(tk)+u(tk)uf)}

ineZ w(k)eW a(tlk)eXy
uN €U z(k)ex, k

. J

® Subject to the following constraints:

4 )

Dynamic model: x(k + 1) = Ay x(k) + By u(k) + Wigyw(k) + fim

Region bounds: : Six(k) + Riu(k) + Quw(k) < Tz’}

_ _



Optimal control of stochastic hybrid systems

o Find: {i\, uy}

® Resulting from:

4 )

k+N—1
arg{min max ( min x(tk)a(tk)+u(tk)uf)}

ineZ w(k)eW a(tlk)eXy

. J

INFINITE DIMENSION
NON-CONVEX

MIXED-INTEGER OPTIMIZATION




Optimal control of stochastic hybrid systems

[Robust Mode Control]

® Disturbances W are always a bounded convex polytope:

nominal state

X},

@ The maximum of a convex function over a convex set X,
is found at one of their vertices:

(Finite dimension optimization)

. max = max
w(k)eW  w(k)ETw
x(k)e Xy x(k)eTy

q Y




Optimal control of stochastic hybrid systems

[Robust Mode Control]

® The final disturbed state prediction polytope is non-convex:

~N

-
Non-convex

 polytope
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Optimal control of stochastic hybrid systems

[Robust Mode Control]

® The final disturbed state prediction polytope is non-convex:

2o

4 )
Final setis a
non-convex

‘  polytope
o

o




Optimal control of stochastic hybrid systems

[Robust Mode Control]

@ Key idea: restrict the control moves such that, for every value
of the disturbances, the mode is unique at each time instant &.

Qo




Optimal control of stochastic hybrid systems

[Robust Mode Control]

@ Key idea: restrict the control moves such that, for every value
of the disturbances, the mode is unique at each time instant &.

Qo

. \/ ‘The disturbed

set lives only
in one mode

-




Optimal control of stochastic hybrid systems

[Robust Mode Control]

® Key idea: the mode is unique at each time instant £.

4 )

Final set is a

convex polytope




Optimal control of stochastic hybrid systems

[Robust Mode Control]

® For all feasible DMS, j (k) ... j(k+N— 1), find: uy

® Resulting from:

~N

uy el w(k)ET Ty

k+N—1
min  max ( min_ ||z (t|k)—a(t[k)] U(tk)Uf)}

I a(t|k)€2€f

J

® Subject to the following constraints:

~N

-
Dynamic model: x(k+ 1) = A;,) z(k) + Bj) u(k) + W,mw(k) + fix
Robust mode control: S;yx(k) + R;yu(k) + Q;yw(k) < Tja

Bounded convex disturbances: Hy_, w(k) < hw

j(k)



Optimal control of stochastic hybrid systems

[Robust Mode Control]

® For all feasible DMS, j(k) ... j(k+N— 1), find: uy

® Resulting from:

i k+N—1
arg{min max ( min ||x(t|k)—a(t|k)|] u(tk)uf)}

uy el w(k)ET Ty . a(t|k)eXy

~N

\_ J

FINITE DIMENSION

CONVEX

MIXED-INTEGER OPTIMIZATION



Optimal control of stochastic hybrid systems

[ Estimation & Robust Mode Control j

®© How does estimation helps control?

[Estimatorz iT(k) : ZIA?ET (k) , UAJiT (k) : ?AJiT (k)]

At the current

time instantk:( z(k), w(k) ) \/

4 )
[f the estimation was perfect

X would be reduced to z(k)

. J




Optimal control of stochastic hybrid systems

[ Estimation & Robust Mode Control j

®© How does estimation helps control?

[EStimatOr: iT(k) ; C/I\ZIT (k) , W

-

\_

® Reduced uncertainty.

® More accurate state predictions
over the control horizon.

® [mproves control performance.

J




Optimal control of stochastic hybrid systems

[ Estimation & Robust Mode Control j

® How does Robust Mode Control helps

Past time
<

[ Looks T instants |
into the past to
estimate the DMS:

17 ' o k4T—2 [T 1

7 s

Present time

(Reconstruct from k— k+T+1: iT)




Optimal control of stochastic hybrid systems

[ Estimation & Robust Mode Control ]

® How does@t Mode ControDhelps estimation?

~

4 )
Selects for NV instants

into the future a
feasible DMS:

iN — {917927967 . '7Q5}

\_ J




Optimal control of stochastic hybrid systems

[ Estimation & Robust Mode Control j

® How does Robust Mode Control helps

N (Past time

(" . . .
Minimize:

902 (kle) - Yo (k)|

and obtain:

Tiy (K ’ T e o
iy, (K|) e

N Present time
Ui N (k‘

(Use the DMS that resulted from RMC: 1 N)




EXPERIMENTAL APPLICATION



' Experimental application

3-Tank experimental setup




3 on/ off inputs:
Py Vso

3 discrete faults:

4 discrete linearization
variables.

Y

Total number of
discrete modes:

210 — 1024




Objective:

Estimate the discrete
mode that indicates a
fault on valve:

based on the output
measurements:

Consider

$1.048.576 DMS
(feasible = 214.909)
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Experimental application

INSTITUTO
SUPERIOR
TECNICO

Fault detection on a simplified configuration

Continuous state estimation:

Water levels

interm - interm +

basured
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Experimental application

SUPERIOR
TECNICO

Fault detection on a simplified configuration

Continuous state disturbance estimation:

Estimated disturbance

Vio Vio

Interm - Interm +

200




Real / Estimated fault in valve V4

-— Real
Vl() Vio Vio -

interm - interm +

Fault
Active

Fault
Inactive

200
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Experimental application

INSTITUTO
SUPERIOR
TECNICO

Fault detection on a simplified configuration

Probability of discrete mode estimation (fault estimation):

VlO OK or VlO open Vl() interm - or VlO interm +
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Experimental application

SUPERIOR
TECNICO

Optimal control with state estimation

Continuous input

On/off inout 2 on/ off inputs:
n/off inpu
(™ P Vis Vas

Sincronized on/off

50 discrete linearization
modes.

Total number of
discrete modes:

200
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Experimental application

SUPERIOR
TECNICO

Optimal control with state estimation

Continuous input

On/off input T

Sincronized on/off Maximize /3 such that:

Objective:

1) and donot
overflow.

2) 2XQ13=3%X Q23

subject to disturbances:




Water levels

vl

100 150 200 250
Time (s)
Input

Mixture Ratio

150 200
Time (s)
Input disturbances

— mixture ratio
T

250 300




CONCLUSIONS AND FUTURE DEVELOPMENTS



Conclusions and future developments

Hybrid systems: powerful tool for the design of embedded systems.

Hybrid systems: quite complex models, easily explode in the number
of variables.

Simultaneous state and mode estimation: Np complete MIP problem,
which size grows exponentially with the number of discrete modes.

Multi-agent architectures: eliminate redundancy in the model.

Robust hybrid stochastic control: consider mode uncertainty with
known state, instead of Robust Mode Control. Merge of both?

Applications: still finding important applications, like control over
networks, platoon control, humanoid robotic applications,
cooperative agent control, biological systems.





