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Context...

STOCHASTIC
HYBRID

SYSTEMS
How to control

the system?

Is the system
observable?

What’s the
system state?

ESTIMATION & CONTROL
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Motivation...

Why study hybrid systems?

World is full of complex interconnected systems

Sophisticated software and
hardware onboard

Embedded systems

Continuous signals 
+ discrete events
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Cost of a car comes more than 30% from Electronics.

90% of future innovations will be based on electronic systems.
More than 80 microprocessors and millions of lines of code.

Automotive industry

Motivation...
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Motivation...

Product specification (communications protocols).

System integration and critical software development.

Configure

Sense
Actuate Regulate

Display

Trend

Diagnose
Predict

Archive

Automotive industry
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Traffic management

Motivation...

Automated highway systems: platoon control.

Air traffic management.

Power management.

Large scale multi-agent systems: cooperative control.

6



Communications

Motivation...

The world is becoming wireless!

From main stream servers to personal devices (mobile phone, pda,...).

Shared and adaptive communications networks.

Heterogeneous hardware/software, mixed architectures.

New applications (toy industry, e-commerce, voip,...).
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Systems Biology

Motivation...

Biological systems provide a rich source of examples for control. 

Principles from control help understand biological systems.

Medical advances, new drugs, gene therapies, biomedical research.
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Understand the knowledge system level of a biological system.



Motivation...

Why study hybrid systems?

Modeling abstraction of a wide range of systems:
- Systems with phased operation (walking robots, systems with colisions)
- Systems controlled by discrete inputs (switches, valves, digital computers)
- Hierarchical coordinating systems (multi-agent)

Merge of computation + physics + communications, the core of 
new technological innovations:

- Automated Highway Systems
- Air Traffic Management Systems
- Safety systems
- Biological systems
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Motivation...

Why study estimation and control of hybrid systems?

1) State estimation enables fault detection!

Detect critical 
situations

Avoid error 
propagation

 Rather complex and still partially unsolved problem

2) Control algorithms require full state feedback!
Measuring is not 

economically feasible or 
physically possible

Observers are 
needed
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Outline...

I. Modeling of hybrid systems

II. Estimation of stochastic hybrid systems

III. Optimal control of stochastic hybrid systems 

IV. Experimental application 

V. Conclusions and future developments 
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Part I

MODELING OF HYBRID SYSTEMS
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Modeling of hybrid systems

Computer
Science

Control
Theory

HYBRID
SYSTEMS

x ∈ Rn

u ∈ Rm

y ∈ Rp

x ∈ {1, 2, 3, 4, 5}
u ∈ {A, B,C}

Finite state machines Continuous dynamical systems

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t))

u(t) y(t)
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Event-driven world Time-driven world

computer science control theory
Tends to abstract from the 

physical world
Tends to ignore computational 

limitations

Modeling of hybrid systems

Objective 2: simple enough for analysis and synthesis problems
Objective 1: descriptive enough to capture the system behaviour
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• Switching between modes due to occurrence of events: 
- external/internal signals, or system dynamics itself.

• System can be in one of several modes (Discrete Mode).

ẋ2 = f2(x2, u)
y = g2(x2, u)

ẋ1 = f1(x1, u)
y = g1(x1, u)

ẋ3 = f3(x3, u)
y = g3(x3, u)

• Each mode behavior described by difference/differential equations.

Modeling of hybrid systems
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Intrinsically hybrid systems...

T = 19◦ T = 23◦ T

Turn on the heat Turn off the heat

T ≤ 19◦

T ≥ 23◦

Ṫ = −T Ṫ = −T + Q

on modeoff mode
Hybrid dynamics:

Modeling of hybrid systems
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Modeling of hybrid systems

Intrinsically hybrid systems...
4 stroke engine

Discrete input + Continuous input + Continuous states

valves fuel, air
pressure, temperature, ...
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Modeling of hybrid systems

Intrinsically hybrid systems...

Driving a motorcycle

Discrete input + Continuous input + Continuous states

1,2,3,4,N brakes, gas, clutch
velocity, torque, ...
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Modeling of hybrid systems

Representation of hybrid systems...

HYBRID
SYSTEMS
MODELS

Piece-Wise Affine (PWA)

Max-Min-Plus Scaling (MMPS)

Linear Complementary (LC)

Mixed Logical Dynamic (MLD)
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x1

x2

Ω1Ω2

Ω3

i(k) ∈ I ! {1, . . . , s} ⊂ N+ , ∀k

Non-overlapping regions:

i != j ⇒ Ωi

⋂
Ωj = ∅

Ω !
⋃

i∈I
Ωi

x(k + 1) = Ai(k) x(k) + Bi(k) u(k) + fi(k)

i(k) = j iff
[

x(k)
u(k)

]
∈ Ωj

y(k) = Ci(k) x(k) + Di(k) u(k) + gi(k)

Si x(k) + Ri u(k) ≤ Ti

Polytopes definition in the 
input+state region:

is also a polytope.Ω

Modeling of hybrid systems

The Piece-Wise Affine (PWA) model
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Ω1

Ω2

Ω3

x(1)

x(2)

Discrete mode sequence:

x(0)

x(k + 1) = A3 x(k) + B3 u(k) + f3

y(k) = C3 x(k) + D3 u(k) + g3

x(k + 1) = A2 x(k) + B2 u(k) + f2

y(k) = C2 x(k) + D2 u(k) + g2

x(k + 1) = A1 x(k) + B1 u(k) + f1

y(k) = C1 x(k) + D1 u(k) + g1

Modeling of hybrid systems

Example of a deterministic PWA model

i = [1, 2, 3]
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Uncertainty in the 
continuous state

Uncertainty in 
the discrete mode

x(k + 1) = Ai(k) x(k) + Bi(k) u(k) + Wi(k)w(k) + fi(k)

y(k) = Ci(k) x(k) + Di(k) u(k) + gi(k) + v(k)

Ωi !









x(k)
u(k)
w(k)



 : Six(k) + Riu(k) + Qiw(k) ≤ Ti






Mutual impact of the disturbances:

Modeling of hybrid systems

The stochastic PWA model
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j = [1, 1, 3]

Slight state deviation can 
cause the system to 

evolve with a different 
mode sequence. 

Ω1

Ω2

Ω3

x(1)

x(2)

x(0)

Modeling of hybrid systems

Analysis of a stochastic PWA model

Discrete mode sequence:

x′(0)

x′(1)

x′(2)
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Part II

ESTIMATION OF STOCHASTIC HYBRID SYSTEMS

29



Observability is not a 
global property for 

general hybrid systems !

Estimation of stochastic hybrid systems

Estimation Observability Injectivity≡
A given output sequence may 
be produced by more than one 

trajectory of the system
x1

x2

y

k

x(0)

x′(0)
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Estimation of stochastic hybrid systems

 
Observability of 

stochastic hybrid systems

Estimation
of deterministic 
hybrid systems

Observability
properties

ESTIMATION OF 
STOCHASTIC

HYBRID
SYSTEMS

The Interacting Multiple Model (IMM)
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Estimation of deterministic hybrid systems

Given:

Knowing:

Estimate:
x̂(t) − Continuous state evolution
î(k) − Discrete mode sequence

x(k + 1) = Ai(k) x(k) + Bi(k) u(k) + fi(k)

y(k) = Ci(k) x(k) + Di(k) u(k) + gi(k)

Ωi !
{[

x(k)
u(k)

]
: Six(t) + Riu(k)+ ≤ Ti

}

y(k)

k+1 k+2k . . .

u(k)

Problem formulation
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Estimation of deterministic hybrid systems

Hybrid observer design

Methodology:
1) Guarantee Discrete Mode Observability.
2) Guarantee Continuous Mode Observability.

Hybrid
Observer

Deterministic 
Hybrid System

u(k) y(k)

x̂(k)
î(k)
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Estimation of deterministic hybrid systems

Dynamics will be analyzed over a size window    :  T

k k + 1 · · · k+T−2 k+T−1

y(k)

u(k)

[k, k+T−1]

Time compressed model over the size window    :  T

XT (k) = AiT (k) x(k) + BiT (k) UT (k) + fiT (k)

YT (k) = CiT (k) x(k) + DiT (k) UT (k) + giT (k)

ΩiT !
{[

x(k)
UT (k)

]
: SiT x(k) + RiT UT (k) ≤ TiT

}
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Estimation of deterministic hybrid systems

Matrix definitions...

CiT =





Ci0

Ci1Ai0

Ci2Ai1Ai0
...

CiT−1AiT−2 . . . Ai1Ai0





DiT =





Di1 0 · · · 0 0
Ci1Bi0 Di1 · · · 0 0

Ci2Ai1Bi0 Ci2Bi1 · · · 0 0
...

...
. . . . . .

...
CiT−1AiT−2 . . . Ai1Bi0 CiT−1AiT−2 . . . Ai2Bi1 · · · CiT−1BiT−2 DiT−1





AiT =





Inx

Ai0

Ai1Ai0
...

AiT−2 . . . Ai1Ai0





BiT =





0 0 · · · 0 0
Bi0 0 · · · 0 0

Ai1Bi0 Bi1 · · · 0 0
...

...
. . .

...
...

AiT−2 . . . Ai1Bi0 AiT−2 . . . Ai2Bi1 · · · BiT−2 0




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Observability of deterministic hybrid systems

Discrete Mode Observability

A PWA system is Mode Observable iff for any pair of feasible hybrid 
trajectories:

the following holds:

i.e., there is no overlapping between both output feasibility polytopes:

iT != jT ⇒ Y
(
xi, UT , 0, 0, iT

)
!= Y

(
xj, UT , 0, 0, jT

)

(
xi, UT , iT

)
,

(
xj, UT , jT

)

YiT , YjT

Discrete Mode 
Observability

≡ Separability of the outputs for 
different discrete mode sequences
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Observability of deterministic hybrid systems

Discrete mode sequences      and       are not observable from         .y(k)

Ω1

Ω2

Ω3

x(1)

x(2)

x(0)

k
x′(1)

x′(2)

x′(0)

j3 k3

j3 = [1 2 3]
i3 = [1 3 2]
k3 = [2 1 3]

x′′(0)

x′′(1)

x′′(2) 0 1 2

Y3

Discrete mode observability: injectivity in the mode
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Observability of deterministic hybrid systems

defined in the polytopic region:

x(t)

u(t)

−2 2

1

−1

x(k) ∈ X !
[
− 2 , 2

]

u(k) ∈ U !
[
− 1 , 1

]

0−2 2
Mode [1] Mode [2]

x(k + 1) = −0.5 x(k) + u(k)
y(k) = x(k)

x(k + 1) = −x(k) + u(k)
y(k) = x(k)− 0.5

x(k)

Example: deterministic PWA system with 2 modes
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!2 !1 0 1 2
$1

!2 !1 0 1 2
y1

Observability of deterministic hybrid systems

0−2 2
Mode [1] Mode [2]

x(k + 1) = −0.5 x(k) + u(k)
y(k) = x(k)

x(k + 1) = −x(k) + u(k)
y(k) = x(k)− 0.5

x(k)

The mode is not observable
from the output

Output feasibility polytopes for           :T=1

y(0) y(0)
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!2 !1 0 1 2

!1

!0.5

0

0.5

1

x

u

!2 !1 0 1 2

!1

!0.5

0

0.5

1

x

u

Observability of deterministic hybrid systems

0−2 2
Mode [1] Mode [2]

x(k + 1) = −0.5 x(k) + u(k)
y(k) = x(k)

x(k + 1) = −x(k) + u(k)
y(k) = x(k)− 0.5

x(k)
Overlapping output regions for           :T=2

x(k)

u
(k

)

x(k)

u
(k

)

i2 = [1 2] j2 = [2 1]

The mode is not observable
from the output
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Observability of deterministic hybrid systems

Continuous State Observability
A PWA system is Pathwise Observable iff there exists a finite horizon   
T such that all feasible discrete mode sequences                                      
are observable, i.e.:

The smallest value for T,             , is the index of the PWO. 

rank(CiT ) = rank









Ci0

Ci1Ai0

Ci2Ai1Ai0
...

CiT−1AiT−2 . . . Ai1Ai0








= n

{i(0), . . . , i(T − 1)}

TPWO

The observations:
{y(0), . . . , y(T − 1)}

Uniquely determine: 

for every admissible DMS.
x0

54



Observability of deterministic hybrid systems

[1 1 1] [1 2 1] [2 1 2 2] [...]

rank








C1

C1A1

C1A2
1







 = rank








C1

C2A1

C1A2A1







 = rank









C2

C1A2

C2A2A1

C2A2A2A1







 = · · · = 3

Example: PWA system with           , and 2 modes: 

Ω2

Ω1

x(k + 1) = A1 x(k) + B1 u(k) + f1

y(k) = C1 x(k) + D1 u(k) + g1

x(k + 1) = A2 x(k) + B2 u(k) + f2

y(k) = C2 x(k) + D2 u(k) + g2

n = 3 i = {1, 2}

How to find the smallest value for     that is enough to prove pathwise observability?T
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Observability of deterministic hybrid systems

[Sontag, 1981: observability of general PWA systems is undecidable, but T-observability (although a NP-complete problem) is decidable]

A PWA system is State Observable iff:

➡ System is Pathwise Observable with index PWO                            :

Unique determination of       when the DMS of length              is known.

➡ System is Mode Observable at             :

Unique DMS               produces the measured outputs.

TPWO

Continuous State Observability

(T = TPWO)

⇓
x0

⇓
iTP W O

TPWO
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Observability of stochastic hybrid systems

Given:

Knowing:

Estimate:

y(k)

k+1 k+2k . . .

u(k)

x(k + 1) = Ai(k) x(k) + Bi(k) u(k) + Wi(k)w(k) + fi(k)

y(k) = Ci(k) x(k) + Di(k) u(k) + gi(k) + v(k)

Ωi !









x(k)
u(k)
w(k)



 : Six(k) + Riu(k) + Qiw(k) ≤ Ti






x̂(k) − Continuous state evolution
î(k) − Discrete mode sequence

Problem formulation

57



Observability of stochastic hybrid systems

2) Several DMS       are candidate to have produced a given measurement 
sequence, although some with a higher probability than others.

iT

1) The hybrid trajectories            are characterized in probability.XT (k)

XT (k) = AiT (k) x(k) + BiT (k)UT (k) + WiT (k)WT (k) + fiT (k)

YT (k) = CiT (k)x(k) + DiT (k)UT (k) + giT (k) + LiT (k)WT (k) + VT (k)

ΩiT !
{[

x(k)
UT (k)

WT (k)(k)

]
: SiT x(k) + RiT UT (k) + QiT WT (k) ≤ TiT

}

The time compressed stochastic model
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Observability of stochastic hybrid systems

Discrete Mode Observability in Probability

Ω1

Ω2

x(1)

x(0)

x(2)

Ω3

x′(0)

x′(1)

x′(2)

Which DMS     or      is more likely to have produced      ?Y3i3 j3

Measured output

k
0 1 2

Y3

Probability of        , Y3

Probability of        , j3=[1 1 3]

i3=[1 2 3]

Y3
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Mode Observability is given in probability! 
No longer a YES/NO answer!

Observability of stochastic hybrid systems

For a given fixed input and output data sequences:

Discrete Mode Observability in Probability

 Find the DMS with the highest probability of matching 

(UT , YT )

(UT , YT )

fixed Set of admissible 
DMS with length T

i∗T
(
YT , UT ,JT

)
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System is Mode Observable 
with at least probability PMO

Observability of stochastic hybrid systems

Discrete Mode Observability in Probability

DMS maximum likelihood estimator:

DMS least squares estimator:

î∗T
(
YT , UT ,JT

)
= arg min

jT∈JT

‖YT − ỸjT (UT )‖2

î∗T
(
YT , UT ,JT

)
= arg max

jT∈JT

Pr
(
YT ∈ ỸjT (UT )

)
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Observability of stochastic hybrid systems

defined in the polytopic region:

x(t)

u(t)

−2 2

1

−1

x(k) ∈ X !
[
− 2 , 2

]

u(k) ∈ U !
[
− 1 , 1

]

0−2 2
Mode [1] Mode [2]

x(k)

x(k + 1) = −0.5 x(k) + u(k)
y(k) = x(k) + v(k)
v(k) ∈ V1 ! [−0.2 , 0.2]

x(k + 1) = −x(k) + u(k)
y(k) = x(k)− 0.5 + v(k)
v(k) ∈ V2 ! [−0.5 , 0.5]

Example: stochastic PWA system with 2 modes
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!2 !1 0 1 2
$1

!2 !1 0 1 2
$1

Observability of stochastic hybrid systems

y(0) y(0)

Output feasibility polytopes for           :T=1
0−2 2

Mode [1] Mode [2]

x(k)

x(k + 1) = −0.5 x(k) + u(k)
y(k) = x(k) + v(k)
v(k) ∈ V1 ! [−0.2 , 0.2]

x(k + 1) = −x(k) + u(k)
y(k) = x(k)− 0.5 + v(k)
v(k) ∈ V2 ! [−0.5 , 0.5]

The mode is not observable
from the output
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!2 !1 0 1 2

!1

!0.5

0

0.5

1

x

u

!2 !1 0 1 2

!1

!0.5

0

0.5

1

x

u

!2 !1 0 1 2

!1

!0.5

0

0.5

1

x

u

!2 !1 0 1 2

!1

!0.5

0

0.5

1

x

u

Observability of stochastic hybrid systems

Probability of correct mode estimation (Least Squares Estimator)

u
(k

)

x(k)

u
(k

)

x(k)

u
(k

)

x(k)

u
(k

)

x(k)

i2 = [1 1]

i2 = [2 1] i2 = [2 2]

i2 = [1 2]
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!2 !1 0 1 2

!1

!0.5

0

0.5

1

x

u

!2 !1 0 1 2

!1

!0.5

0

0.5

1

x

u

!2 !1 0 1 2

!1

!0.5

0

0.5

1

x

u

!2 !1 0 1 2

!1

!0.5

0

0.5

1

x

u

Observability of stochastic hybrid systems

Probability of correct mode estimation (Max. Likelihood Estimator)

u
(k

)

x(k)

u
(k

)

x(k)

u
(k

)

x(k)

u
(k

)

x(k)

i2 = [1 1]

i2 = [2 1] i2 = [2 2]

i2 = [1 2]
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Observability of stochastic hybrid systems

Continuous State Observability

Uniquely determine: 

for every admissible DMS.

The observations:
{y(0), . . . , y(T − 1)}

x0

In order to guarantee Pathwise Observability:

The same condition as for the deterministic case.

But all in probabilistic terms...
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Observability of stochastic hybrid systems

A PWA system is State Observable with a given probability iff:

➡ System is Pathwise Observable with index PWO                            :

Unique determination of       in a least squares sense when 
the DMS of length              is known.

➡ System is Mode Observable with probability           :

                     has the highest probability of being the correct mode estimation.

TPWO

Continuous State Observability in Probability

(T = TPWO)

⇓
x0

⇓
PMO

î∗TP W O
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Estimation of stochastic hybrid systems

k k + 1 · · · k+T−2 k+T−1

y(k)

u(k)

T Present time 

Past time 
t

Objective: estimate          and the current discrete mode           x̂(t) î(t)

Problem formulation
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Observability 
properties

Estimation of stochastic hybrid systems

k k + 1 · · · k+T−2 k+T−1

y(k)

u(k)

T

Past time 
t

Present time 

îT

x̂iT (k|t) , ŵiT (k|t) , v̂iT (k|t)

Reconstruct from                    

Discrete mode sequence: 

Continuous time sequences: k → k+T +1
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Estimation of stochastic hybrid systems

General Estimation Problem

Ω1

Ω2

Ω3

Number of modes: 
Data sequence dimension:

3Example:

⇓
Possible DMS:

4

34 =81

Find from all possible DMS      :jT
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Estimation of stochastic hybrid systems

General Estimation Problem

Number of modes: 
Data sequence dimension:

Example:

⇓
4

6

Possible DMS: 1296

Ω1

Ω2

Ω3

Ω4

Ω5
Ω6

Find from all possible DMS      :jT
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Estimation of stochastic hybrid systems

General Estimation Problem

Subject to the following constraints:

Dynamic model:

Region bounds:
Disturbance bounds:

Such that: 

is minimized
∥∥∥Ŷ ∗

jT
(k|t)− YT (k)

∥∥∥
2

Σ−1
YjT

Estimations: 

Find from all possible DMS      :jT

84

x̂jT (k|t) , ŴjT (k|t) , V̂jT (k|t)

Ŷ ∗
jT

(k|t)=CjT (k)+DjT UT (k)+gjT +LjT ŴjT (k)+V̂jT (k)

SjT (k) + RjT UT (k) + QjT ŴjT ≤ TjT

HWjT
ŴjT (k) ≤ hjT , HVjT

V̂jT (k) ≤ hjT



Estimation of stochastic hybrid systems

General Estimation Problem
Solution of a Constrained Least Squares Optimization:

Previous solution
at time instant t−1




x̂jT (k|t)
ŴjT (k|t)
V̂jT (k|t)



=




x̂jT (k|t−1)
ŴjT (k|t−1)
V̂jT (k|t−1)



+KjT (k|t)




[

he

hi

]
−

[
He

Hi

]
.




x̂jT (k|t−1)
ŴjT (k|t−1)
V̂jT (k|t−1)








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Estimation of stochastic hybrid systems

General Estimation Problem
Solution of a Constrained Least Squares Optimization:

Dynamic model

Region bounds Disturbance bounds





Ŷ ∗
jT

(k|t)−DjT UT (k)−gjT

TjT −RjT UT (k)
hWjT

hVjT



−





CjT LjT InY

SjT QjT 0
0 HWjT

0
0 0 HVjT



 .




x̂jT (k|t−1)
ŴjT (k|t−1)
V̂jT (k|t−1)








x̂jT (k|t)
ŴjT (k|t)
V̂jT (k|t)



=




x̂jT (k|t−1)
ŴjT (k|t−1)
V̂jT (k|t−1)



+KjT (k|t)




[

he

hi

]
−

[
He

Hi

]
.




x̂jT (k|t−1)
ŴjT (k|t−1)
V̂jT (k|t−1)








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Estimation of stochastic hybrid systems

General Estimation Problem
Solution of a Constrained Least Squares Optimization:

Covariance matrix Active set 
constraints matrix

KjT (k|t)=








ΣxjT

(k|t−1) 0 0
0 ΣWjT

0
0 0 ΣVjT




−1

+
[
He

Hi

]T

ZjT (k|t)
[
He

Hi

]




−1
[
He

Hi

]T

ZjT (k|t)




x̂jT (k|t)
ŴjT (k|t)
V̂jT (k|t)



=




x̂jT (k|t−1)
ŴjT (k|t−1)
V̂jT (k|t−1)



+KjT (k|t)




[

he

hi

]
−

[
He

Hi

]
.




x̂jT (k|t−1)
ŴjT (k|t−1)
V̂jT (k|t−1)









95



Estimation of stochastic hybrid systems

General Estimation Problem
Solution of a Constrained Least Squares Optimization:

Complex and time-consuming optimization!

The Interacting Multiple Model




x̂jT (k|t)
ŴjT (k|t)
V̂jT (k|t)



=




x̂jT (k|t−1)
ŴjT (k|t−1)
V̂jT (k|t−1)



+KjT (k|t)




[

he

hi

]
−

[
He

Hi

]
.




x̂jT (k|t−1)
ŴjT (k|t−1)
V̂jT (k|t−1)








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Find:

Such that: 

is minimized

For all possible DMS:

Under to the following constraints:

Dynamic model:

Region bounds:

Disturbance bounds:

jT

∥∥∥Ŷ ∗
jT

(k|t)− YT (k)
∥∥∥

2

Σ−1
YjT

Estimation of stochastic hybrid systems

The Interacting Multiple Model

1st step: unconstrained least squares optimization

99

x̂jT (k|t) , ŴjT (k|t) , V̂jT (k|t)

Ŷ ∗
jT

(k|t)=CjT (k)+DjT UT (k)+gjT +LjT ŴjT (k)+V̂jT (k)

SjT (k) + RjT UT (k) + QjT ŴjT ≤ TjT

HWjT
ŴjT (k) ≤ hjT , HVjT

V̂jT (k) ≤ hjT



Estimation of stochastic hybrid systems

Advantage: fast optimization.

The Interacting Multiple Model

1st step: unconstrained least squares optimization

x̂jT (k|t)= x̂jT (k|t− 1)+KjT(k|t− 1)
[
YT (k)−Ŷ ∗

jT
(k|t)

]

Concern: some DMS       admit unfeasible state trajectories            
if region bounds were to be considered.

jT x̂jT (k)

100



2nd step: ranks the DMS according to the optimization error 

Estimation of stochastic hybrid systems

∥∥∥Ŷ ∗
jT

(k|t)− YT (k)
∥∥∥

2
= εu

jT

DMS Error

...
...

j1T
j2T
j3T
j4T

jnT εu
jnT

εu
j4T

εu
j3T

εu
j2T

εu
j1T

εu
j1T

< εu
j2T

< · · · < εu
jnT

Ascending order:
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Estimation of stochastic hybrid systems

3rd step: constrained least squares optimization 

Solve constrained
least squares 

Find:

Such that: 

is minimized

For the DMS:

Subjecto to the following constraints:

Dynamic model:

Region bounds:

Disturbance bounds:

DMS Error

...
...

j1T
j2T
j3T
j4T

jnT εu
jnT

εu
j4T

εu
j3T

εu
j2T

εu
j1T

j1T

j1T

106

Ŷ ∗
j
1
T
(k|t)=Cj

1
T
(k)+Dj

1
T
UT (k)+gj

1
T
+Lj

1
T
Ŵj

1
T
(k)+V̂j

1
T
(k)

Sj
1
T
(k) + Rj

1
T
UT (k) + Qj

1
T
Ŵj

1
T
≤ Tj

1
T

HW
j
1
T

Ŵj
1
T
(k) ≤ hj

1
T

, HV
j
1
T

V̂j
1
T
(k) ≤ hj

1
T

∥∥∥Ŷ ∗
j
1
T
(k|t)− YT (k)

∥∥∥
2

x̂j1T
(k|t) , Ŵ j1T

(k|t) , V̂ j1T
(k|t)



Estimation of stochastic hybrid systems

3rd step: constrained least squares optimization 

Solve constrained
least squares 

Computes the least 
squares error

is relocatedPair

DMS Error

...
...

j1T
j2T
j3T
j4T

jnT εu
jnT

εu
j4T

εu
j3T

εu
j2T

εu
j1T

j1T

εc
j1T

εu
j3T

< εc
j1T

< εu
j4T

(j1T ,εc
j1T

)

108

x̂j1T
(k|t) , Ŵ j1T

(k|t) , V̂ j1T
(k|t)



Estimation of stochastic hybrid systems

3rd step: constrained least squares optimization 

Solve constrained
least squares 

Computes the least 
squares error

j1T

εc
j1T

DMS Error

...
...

j1T
j2T
j3T

j4T

jnT

εu
j1T

εu
j2T

εu
j3T

εu
j4T

εu
jnT

j1T εc
j1T

109

x̂j1T
(k|t) , Ŵ j1T

(k|t) , V̂ j1T
(k|t)



Estimation of stochastic hybrid systems

3rd step: constrained least squares optimization 

Solve constrained
least squares 

Computes the least 
squares error

...
j2T

DMS Error

...
...

j1T
j2T
j3T

j4T

jnT

εu
j1T

εu
j2T

εu
j3T

εu
j4T

εu
jnT

j1T εc
j1T

110

εc
j
2
T

=
∥∥∥Ŷ ∗

j
2
T
(k|t)− YT (k)

∥∥∥
2

x̂j2T
(k|t) , Ŵ j2T

(k|t) , V̂ j2T
(k|t)



Process stops when        is 
already a constrained solution         

Estimation of stochastic hybrid systems

3rd step: constrained least squares optimization 

Solve constrained
least squares 

Computes the least 
squares error

...

Optimal solution 
found!        ⇒

DMS Error

...
...

j1T
j2T
j3T

j4T

jnT

εu
j1T

εu
j2T

εu
j3T

εu
j4T

εu
jnT

j1T εc
j1T

j2T

jiT

111

εc
j
2
T

=
∥∥∥Ŷ ∗

j
2
T
(k|t)− YT (k)

∥∥∥
2

x̂j2T
(k|t) , Ŵ j2T

(k|t) , V̂ j2T
(k|t)



Part III

OPTIMAL CONTROL OF 
STOCHASTIC HYBRID SYSTEMS
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Optimal control of stochastic hybrid systems

Find: the optimal DMS of length N:      i∗N
the N optimal control moves:{ u∗N

Move in N steps from:

Uncertainty in the state:

Relaxation:

Xk → Xf

w(k) ∈ W
x(k) ∈ Xk

x(0)→ xf

xf
Ω1

Ω2

Ω4

Ω5

Ω6

Xk

Xf

x(0)

and apply RHC.

Ω3

Problem formulation
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Optimal control of stochastic hybrid systems

Find: {i∗N , u∗N}

Resulting from:

For the worst case scenario 
of disturbances affecting x(k)

arg




 min
iN∈I
uN∈U

max
w(k)∈W
x(k)∈Xk

(
k+N−1∑

t=k

min
a(t|k)∈Xf

‖x(t|k)−a(t|k)‖+‖u(t|k)−uf‖
)




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Optimal control of stochastic hybrid systems

Find: {i∗N , u∗N}

Resulting from:

Minimize with respect to:

and
i(k) . . . i(k + N − 1)

u(k) . . . u(k + N − 1)

arg




 min
iN∈I
uN∈U

max
w(k)∈W
x(k)∈Xk

(
k+N−1∑

t=k

min
a(t|k)∈Xf

‖x(t|k)−a(t|k)‖+‖u(t|k)−uf‖
)




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Optimal control of stochastic hybrid systems

Find: {i∗N , u∗N}

Resulting from:

Minimum distance between the state 
and the auxiliary variable

arg




 min
iN∈I
uN∈U

max
w(k)∈W
x(k)∈Xk

(
k+N−1∑

t=k

min
a(t|k)∈Xf

‖x(t|k)−a(t|k)‖+‖u(t|k)−uf‖
)





a(t|k)∈Xf
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Optimal control of stochastic hybrid systems

Find: {i∗N , u∗N}

Resulting from:

The state reaches steady state 
nominal input: u(k|t)=uf

arg




 min
iN∈I
uN∈U

max
w(k)∈W
x(k)∈Xk

(
k+N−1∑

t=k

min
a(t|k)∈Xf

‖x(t|k)−a(t|k)‖+‖u(t|k)−uf‖
)




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Optimal control of stochastic hybrid systems

Find: {i∗N , u∗N}

Resulting from:

Subject to the following constraints:

Dynamic model:

Region bounds: Ωi !









x(k)
u(k)
w(k)



 : Six(k) + Riu(k) + Qiw(k) ≤ Ti






x(k + 1) = Ai(k) x(k) + Bi(k) u(k) + Wi(k)w(k) + fi(k)

arg




 min
iN∈I
uN∈U

max
w(k)∈W
x(k)∈Xk

(
k+N−1∑

t=k

min
a(t|k)∈Xf

‖x(t|k)−a(t|k)‖+‖u(t|k)−uf‖
)




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Optimal control of stochastic hybrid systems

Find: {i∗N , u∗N}

Resulting from:

Subject to the following constraints:

Dynamic model:

Region bounds: Ωi !









x(k)
u(k)
w(k)



 : Six(k) + Riu(k) + Qiw(k) ≤ Ti






x(k + 1) = Ai(k) x(k) + Bi(k) u(k) + Wi(k)w(k) + fi(k)

arg




 min
iN∈I
uN∈U

max
w(k)∈W
x(k)∈Xk

(
k+N−1∑

t=k

min
a(t|k)∈Xf

‖x(t|k)−a(t|k)‖+‖u(t|k)−uf‖
)





INFINITE DIMENSION

NON-CONVEX 

MIXED-INTEGER OPTIMIZATION
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Optimal control of stochastic hybrid systems

Disturbances      are always a bounded convex polytope:W

The maximum of a convex function over a convex set        
is found at one of their vertices:

Xk

Xk

max
w(k)∈W
x(k)∈Xk

≡ max
w(k)∈ΥW
x(k)∈ΥX

Finite dimension optimization

Robust Mode Control

x(k)

x(k)≡ ΥX

nominal state
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Optimal control of stochastic hybrid systems

The final disturbed state prediction polytope is non-convex:

Robust Mode Control

Ω1

Ω3

Ω4

Ω5

Ω6

Ω2

X1

X2

X0

X2

Non-convex 
polytope

131



Final set is a
non-convex 

polytope

Optimal control of stochastic hybrid systems

Ω1

Ω3

Ω4

Ω5

Ω6

Ω2

Robust Mode Control

X1

X2

X3

X0

X2

X3

X3

The final disturbed state prediction polytope is non-convex:

135



Key idea: restrict the control moves such that, for every value 
of the disturbances, the mode is unique at each time instant   .

Optimal control of stochastic hybrid systems

k

Ω1

Ω2

Robust Mode Control

X1

X0

137



Key idea: restrict the control moves such that, for every value 
of the disturbances, the mode is unique at each time instant   .

Optimal control of stochastic hybrid systems

k

Ω1

Ω2

!

Robust Mode Control

X1

X0

The disturbed 
set lives only 
in one mode

138



Optimal control of stochastic hybrid systems

Ω1

Ω2
Ω3

Ω4

Ω5

Ω6

Key idea: the mode is unique at each time instant   .k

Final set is a 
convex polytope

Robust Mode Control

X1

X2

X3

X0

143



Optimal control of stochastic hybrid systems

Resulting from:

arg




 min
uN∈U

max
w(k)∈ΥW
x(k)∈ΥX

(
k+N−1∑

t=k

min
a(t|k)∈Xf

‖x(t|k)−a(t|k)‖+‖u(t|k)−uf‖
)





Subject to the following constraints:

Dynamic model: x(k + 1) = Aj(k) x(k) + Bj(k) u(k) + Wj(k)w(k) + fj(k)

Robust mode control: Sj(k)x(k) + Rj(k)u(k) + Qj(k)w(k) ≤ Tj(k)

Bounded convex disturbances: HWj(k)w(k) ≤ hWj(k)

For all feasible DMS,                                     , find: u∗N

Robust Mode Control

j(k) . . . j(k+N− 1)
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Optimal control of stochastic hybrid systems

Resulting from:

arg




 min
uN∈U

max
w(k)∈ΥW
x(k)∈ΥX

(
k+N−1∑

t=k

min
a(t|k)∈Xf

‖x(t|k)−a(t|k)‖+‖u(t|k)−uf‖
)





Subject to the following constraints:

Dynamic model: x(k + 1) = Aj(k) x(k) + Bj(k) u(k) + Wj(k)w(k) + fj(k)

Robust mode control: Sj(k)x(k) + Rj(k)u(k) + Qj(k)w(k) ≤ Tj(k)

Bounded convex disturbances: HWj(k)w(k) ≤ hWj(k)

For all feasible DMS,                                     , find: u∗N

Robust Mode Control

j(k) . . . j(k+N− 1)

FINITE DIMENSION

CONVEX 

MIXED-INTEGER OPTIMIZATION

144



Estimator:

Estimation & Robust Mode Control

Optimal control of stochastic hybrid systems

How does estimation helps control?

îT (k) , x̂îT
(k) , ŵîT

(k) , v̂îT
(k)

x̂(k) , ŵ(k)
At the current
time instant   :k

x̂(k) If the estimation was perfect     
would be reduced to X̂k x̂(k)X̂k

!
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Estimator:

Estimation & Robust Mode Control

Optimal control of stochastic hybrid systems

How does estimation helps control?

îT (k) , x̂îT
(k) , ŵîT

(k) , v̂îT
(k)

Xk

x̂(k)
X̂k

Reduced uncertainty.

More accurate state predictions 
over the control horizon.

Improves control performance.
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Looks     instants 
into the past to 

estimate the DMS:

Estimation & Robust Mode Control

Optimal control of stochastic hybrid systems

How does Robust Mode Control helps estimation?

k k + 1 · · · k+T−2 k+T−1

y(k)

u(k)

T

Past time 

Present time 

Reconstruct from                                :                    k → k+T +1 îT

îT

T

153



Optimal control of stochastic hybrid systems

How does Robust Mode Control helps estimation?

Estimation & Robust Mode Control

Ω1

Ω2 Ω3

Ω4

Ω5

Ω6

Selects for     instants 
into the future a 

feasible DMS:

N

iN = {Ω1,Ω2,Ω6, . . . ,Ω5}

Xk+1

Xk+N−1Xk+2

Xk

154



Estimation & Robust Mode Control

Optimal control of stochastic hybrid systems

How does Robust Mode Control helps estimation?

k k + 1 · · ·

y(k)

u(k)

Past time 

Present time 

Use the DMS that resulted from RMC:                    

Minimize:

and obtain:
k+N−2 k+N−1

N

iN

∥∥∥Ŷ ∗
iN (k|t)− YT (k)

∥∥∥
2

x̂iN (k|t)
ŵiN (k|t)
v̂iN (k|t)
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EXPERIMENTAL APPLICATION

Part IV
156



3-Tank experimental setup

Experimental application

T1 T3 T2

V10 V30

V0V23V13

V20

P2

P1

Reservoir
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Experimental application

3 on/off inputs:
P1, V30, V13

3 discrete faults:
V10, V13, h3

4 discrete linearization 
variables.

Total number of 
discrete modes:

210 = 1024

Fault detection on a simplified configuration

162

⇓



Consider           :

Experimental application

Objective:

Fault detection on a simplified configuration

Estimate the discrete 
mode that indicates a 
fault on valve:

On

Open

Faulty

V10 =




closed︸ ︷︷ ︸
OK

, interm, open






based on the output 
measurements:

h1, h3

T =2

(feasible = 214.909)

165

⇓ 1.048.576 DMS



Experimental application

Fault detection on a simplified configuration

Continuous state estimation:

0 50 100 150 200 250 300
0

10

20

30

40

50

60

Water levels

Time  k  (s)

hi(k)
h1

h3

Measured
IMM

Water levels

Time (s)

hi
(cm) h1

h3

V10 V10 V10 V10 V10 V10

OK interm - interm +open open OK
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Experimental application

Fault detection on a simplified configuration

Continuous state disturbance estimation:

0 50 100 150 200 250 300

0

1

Time k (s)

wV
10

(k)

Estimated input disturbance
IMM

Time (s)

Estimated disturbance

(cm)
wV10 V10 V10 V10 V10 V10 V10

OK interm - interm +open open OK
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Experimental application

Fault detection on a simplified configuration

Discrete mode estimation (fault estimation):

0 50 100 150 200 250 300

"Ok"

"Active"

Time (k)

fV
10

(k)

Real / Estimated fault in valve  V10
Real
IMM

Real/Estimated fault in valveV10

Time (s)

V10 V10 V10 V10 V10 V10

V10
OK interm - interm +open open

OK

Fault
Inactive

Fault
Active
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Probability of discrete mode estimation (fault estimation):

Experimental application

Fault detection on a simplified configuration

!0.5 0 0.5 1 10 61.5

!0.5

0
0.5
1

10

61.5

h1

h3
(cm)

(cm)
!0.5 0 0.5 1 10 61.5

!0.5

0
0.5
1

10

61.5

h1

h3
(cm)

(cm)

V10 V10OK open V10 V10interm - interm +or or
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Experimental application

Optimal control with state estimation
Continuous input

On/off input

Sincronized on/off

disturbances

2 on/off inputs:

50 discrete linearization 
modes.

⇓
Total number of 
discrete modes:

P2 , umix =(V13, V23)

200
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Experimental application

Optimal control with state estimation
Continuous input

On/off input

Sincronized on/off

disturbances

Objective:

Maximize         such that: 

1)       and      do not 
overflow.

2) 

subject to disturbances:

h3

T1 T2

V30,V20

173

2×Q13 =3×Q23



0 50 100 150 200 250 300
0

10

20

30

40

50

60

Water levels

Time (s)

hi (cm)

 

 

h1
h2
h3

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

Input

Time (s)

ui
 

 

u1
u2
umix

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

Input disturbances

Time (s)

wi
 

 

w2
w3

0 50 100 150 200 250 300
0.5

0.6

0.7

0.8

0.9

1
Mixture Ratio

Time (s)

 

 

mixture ratio
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CONCLUSIONS AND FUTURE DEVELOPMENTS

Part IV
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Conclusions and future developments

Hybrid systems: powerful tool for the design of embedded systems.

Hybrid systems: quite complex models, easily explode in the number 
of variables.

Simultaneous state and mode estimation: Np complete MIP problem, 
which size grows exponentially with the number of discrete modes.

Robust hybrid stochastic control: consider mode uncertainty with 
known state, instead of Robust Mode Control. Merge of both?

Applications: still finding important applications, like control over 
networks, platoon control, humanoid robotic applications, 
cooperative agent control, biological systems.

Multi-agent architectures: eliminate redundancy in the model.
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