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Hybrid Systems: Examples
• Systems with commutations: electrical circuits
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• Electric Networks: manage & optimize system configuration
through discrete connections/disconnections of parts

of the net to regulate electrical energy
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The Heterogeneity of Systems

power train

embedded controller sensors

fuel air

E H

C I

engine

Continuous Time

Finite State
Machine

Discrete Event

An Engine Control System



J. Zaytoon, ICINCO’09, Milan

Models of Computation 

power train

embedded controller sensors

fuel air

E H

C I

engine

Continuous Time
• continuous functions
• continuous signals

Finite State Machine
• states
• transitions

Discrete Event
• operations on events
• occurrence time
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Different Approaches 

• Hybrid Systems: Dynamical systems with 
interacting continuous and discrete dynamics

Air Traffic Management Systems
Automated Highway Systems

Uninhabited Aerial Vehicles
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Research Issues in Hybrid Systems 
• Modeling & Simulation

– classify discrete phenomena, existence and uniqueness of execution, Zeno
– composition and abstraction operations 

• Analysis & Verification
– avoid or attain forbidden states: algorithmic or deductive methods, abstraction
– stability, Lyapunov techniques, LMI techniques

• Controller Synthesis
– optimal control, hierarchical control, supervisory control, safety specifications, control 

mode switching
– algorithmic synthesis, synthesis based on HJB

• IFAC Technical Committee on Discrete Event and Hybrid Systems
– IFAC Conference on Analysis and Design of Hybrid Systems (ADHS’03 in France, 

ADHS’06 in Italy, ADHS’09 in Zaragoza – Spain)
• IEEE WG Hybrid Systems
• Nonlinear Analysis: Hybrid Systems (International Journal, Elsevier)
• National groups, NOE, European and International projects, Annual 

Workshop on Hybrid Systems
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Outline 

• Safety verification and reachability
– Hybrid automaton

• Abstraction
– Conserve hybrid nature of the system
– Discrete-Event abstraction

• Characterizing reachable space

• Reachable space computation (overapproximation)
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Hybrid Automaton
• < L, X , U, INV, F, E, Guard, Jump, l0, x0 , u0 >

• state 
• Composition
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Reachable Sets
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• Execution: Admissible trajectories described by a succession of 
continuous & discrete evolutions

• State can advance by progression of time in the current location or 
by an instantaneous transition to a new location

• Continuous & discrete successors (predecessors) for a point or a
region
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Algorithmic Verification: Safety verification

• Since the state space of HS implicitly includes time, many 
properties of HS can be expressed as reachability properties

• Safety properties (is the system dangerous to itself or to its 
environment): Verify, trough reachability computation, that for any 
initial condition, the hybrid state can never enter some unsafe 
region

• Decidability is a central issue in algorithmic analysis because of 
the uncountability of the hybrid state space

Unsafe
Set

Initial
set



J. Zaytoon, ICINCO’09, Milan

• Computation of the reachable set: starting at Init, determine the 
limit of the series of regions defined by

Ri=SuccC(Init) 

• exactly for some very simple classes of systems: Piecewise   
constant differential inclusions, some linear systems

• approximately for other classes: over-approximation 
algorithms, set-based simulation

Reach
Init

Unsafe

))((1 iDCii RSuccSuccRR U=+

Hybrid Reachability based Verification
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Outline 

• Verification and reachability
• Abstraction
• Characterizing reachable space
• Reachable space computation
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Abstraction 

• S2 is an abstraction of S1 iff the image of each trajectory of S1 is also a 
trajectory of S2 (but some executions in S2, introduced by the 
abstraction process, may not be related to trajectories in S1)

• If S2 is safe then S1 is safe

• Linear differential inclusion abstraction
• Discrete avent abstraction

S1: Hybrid
System

S2: DES or 
Hybrid System

Abstraction

Reach (S1)Init

Unsafe

π

Reach (S2)
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Linear differential inclusion abstraction or hybredization (Henzinger
et al., 98; Frehse, 05; Lefebvre,Gueguen & Zaytoon, 06): 

• Approximation of complex continuous dynamics by simpler hybrid 
dynamics 

• Calculate differential inclusion that includes the derivative vector defined 
by the continuous dynamics at each point of the invariant of a location  

• Use the differential inclusion (derivative vectors Ƴ1 and Ƴ2 ) to compute 
the reachable space from P0

• The resulting abstraction (resulting HLA) is generally too coarse, and 
hence the overapproximated reachable space does not allow us to 
conclude for safety verification
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Hybredization: Refine the abstraction

– Partition the invariant of a location into n subsets and replace
the location with n locations whose reachable spaces are over-
approximations of the corresponding subset region 
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the continuous dynamics at 
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Linear differential inclusion abstraction

– Include a transition between two sub-locations of a location if 
there exists a continuous trajectory crossing the boundary 
between the corresponding elements of the partition

– For each e(li lj), include a transition from each sub-location 
of li intersecting Guard(e) to each sub-location of lj intersecting 
Jump(e) 

– Then calculate reachability using the resulting abstraction
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Reachability

• Refine abstractions if resulting regions are too coarse
• No guarantee that this abstraction will eventually allow to 

conclude
• Difficulty: determine a pertinent criteria to refine the partition 

to improve the efficiency of reachability calculation
– Continuous dynamics can be used to determine the regions 

defining the partition of the state space (tradeoff: precision of 
abstraction vs. simplicity of calculation)
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Linear differential inclusion abstraction: Lefebvre, Guéguen, Zaytoon

b+= Axx&

( )
( ) 0

0
0
0

2

1

2

1

≤
≤

⇒
≥−
≤−

xv
xv

w
w

t

t

t

t

&

&

c

c

xx
xx

xc

x1

x2

u1 u2

2x&

1x&u2

u1

• Simple case: Affine planar systems: 

• Half lines defined by the equilibrium point are very useful in 
specifying the partition: at all points of this line, the derivative 
vector is collinear to a unique vector and, so, the trajectories
cross the half-line in the same direction, leading to a very simple 
structure for the abstraction

• The derivative vector of each point between 2 such half lines, is 
included in the convex hull of the 2 vectors characterizing the 
boarder lines, and this defines the differential inclusion of the 
abstraction
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Linear differential inclusion abstraction: Lefebvre, Guéguen, Zaytoon
• Resulting HA for a partition of 8 elements: 

- continuous dynamics in each location given by the differential 
inclusion representing the border line of the corresponding region 
- transition guards 
given by the border 
lines 
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Affine systems

• Extension to systems defined by:
U : space of continuous inputs is a polytope (Nasri et al., 06)

BuxAx += .&

b+= Axx&
{ }  -k ,   s.t.   where, TT bkxxH T γγγ ==∃== Aqq

• For higher dimension affine 
systems, it is possible to 
consider families of 
hyperplanes with certain 
constraints s.t. all trajectories 
cross the hyperplanes in the 
same direction, leading to a 
very simple transition structure 
for the abstraction   
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Discrete Event Abstraction: Alur et al. 03, Chutinan & Krogh 03, 
Tiwari & Khanna 04, Ratschan & She 05, Blouin et al. 03, Kloetzer & Belta 06

φ=∩ )(Re initunsafe RachR )( initunsafe qSuccq ∉

HS DES
Abstraction

• Construction
– partition of state space (consider specific regions: guard, 

invariants, Rinit, Runsafe, and other regions linked to the 
property or sometimes their borders)

– associate an abstract discrete-state to each element of the 
partition

– Calculate the transitions: constraint to satisfy

– If safety condition is not satisfied, iterate the abstraction

))),((()),((),(Re),( nnkknnkk lSuccllachl xxxx ππ ∈⇒∈

π
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• Choice of discrete states

Abstraction on 
guards

transition from q1 to q3 stems from the continuous reachability of G3 from D2

Include a transition from qa to qb if  

Abstraction on 
borders:

Include a transition from qa to qb if  

DE Abstraction

),( eke Glq π=

))(( aDCb GSuccSuccG ⊂

)))((( aCDCb bSuccSuccSuccb ⊂
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• Spurious transitions 
due to abstraction

• Iterative algorithme to refine the abstraction (Tabuada et al., 2002)
Consider a discrete transition & partition the continuous domain of the 
region mapped to the source location
If PredD(PredC(lp, Dp)) ∩ Dk ≠ Dk, split Dk to:

Dk1= PredD(PredC(lp, Dp)) ∩ Dk ;  Dk2= Dk – (PredD(PredC(lp, Dp)) ∩ Dk )
If PredD(PredC(lp, Dp)) ∩ Dk = Dk, no change

• Difficulty: choice of transition to refine:
– transitions leading to regions close to forbidden area
– Transitions close to counter-example trajectory provided by verification

Abstraction

D3

PredD(PredC(l4,D4))D31

D32

D4

q4q2

q3

q1

q4

q2
q3a

q1

q3b
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Outline 

• Verification and reachability
• Abstraction

Building an abstraction requires the determination of reachable 
regions: 2 types of answers
- if the problem is to decide whether there is a discrete transition between
2 locations in case of hybredization or 2 discrete states in case of DE 
abstraction, use methods that gives a yes/no answer

• Characterizing reachable space
- to refine the DE abstraction

• Reachable space computation

In both approaches, reachability calculation is only 
related to 1 location or 2 successive locations
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Characterizing reachable space

• Is it possible to reach a region Pc from region P0
without explicitly computing the reachable space?

• Display borders separating the 
two domains and uncrossable
by continuous trajectories

• Constraints inconsistency: determine  partial (easier to 
compute) characteristics of reachable and goal region 
and prove their inconsistency 

• Existence of Trajectories from P0 to Pc ??
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Uncrossable borders: Use structural properties of continuous dynamics to 
define borders characterising invariant domains that continuous 
trajectories never leave & include initial region (Tiwari, 03, Rodriguez & 
Tiwari 05) 

• Example: linear dynamics 
+ve real eigenvalues λ (2, 4)

• c1=(1 0)T , c2=(0 1)T → cTx ≥ minP0 (cTx) if
λ>0
→ reachable space characterized by: c1

Tx 
≥ 1, c2

Tx ≥ 1
→ PC1 unreachable, PC2??

• Extension to complex λ
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Inconsistent Temporal constraints on reachability in eigenspaces (Yazarel & Pappas 04)

Axx =&• : Projection of trajectory from x0 on eigenspaces (of dimension 1) 
associated with real eigenvalues

• Compute min & max time necessary (through linear programming) to go 
from projection of P0 to projection of PC for each eigenspace

• Check for –ve value of max time or check emptiness of intersection of time 
intervals from different eigenvectors

• Projections of P0 & PC1 on subspace 
defined by eigenvector (1,0): 
bounds: (-∞ 0.5ln0.5 )
tu<0 → PC1 unreachable from P0

• Projections of P0 & PC2 on (1,0): 
bounds: (0.5 ln1.25 0.5 ln3.5)
Projections of P0 & PC2 on (0,1): 
bounds: (0 0.25 ln1.5 )
since 0.25 ln1.5 <0.5 ln1.25 → PC2 unreachable from P0

• The more the number of eigenvalues associated with eigen subspace of 
dimension 1, the more the chances to conclude that Pc is unreachable

uz 1,0
lz 1,0

u
Cz 1,2

l
Cz 1,2

u
Cz 1,1

l
Cz 1,1

u
Cz 2,2

l
Cz 2,2

uz 2,0

lz 2,0
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Inconsistent Spatial (polynomial) constraints on reachability
in eigenspaces (Yazarel et al. 04)

• , A diagonalizable with rational eigenvalues λi or nilpotent 
with pure imaginary eigenvalues

• reachable points on eigenspace of λi can be characterized with a set 
of polynomial constraints

• Check that no point fulfils all constraints through SOS optimization →
goal region unreachable from initial region

• no point in PC2 fulfils C2, C3
→ PC2 unreachable 

• Constraint on positivity
of time:

• no point in PC1 fulfils C2, C3, C4
→ PC1 unreachable 

Axx =&

0  :2 2
2
1 ≥− xxC

32 2
2

2
1 ≥+ xx

04  :3 2
2
1 ≤− xxC
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Barrier certificates (e.g. Prajna et al. 07, Glavaski et al. 05)
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• Choice of type of B(x)
• SOS Optimization if B 

and dynamics are 
polynomial 

Existence of a trajectory: reachability certificate (Prajna & Rantzer, 05)
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Outline 

• Verification and reachability
• Abstraction
• Characterizing reachable space
• Reachable space computation
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Reachable space calculation

• When refining a DE abstraction

• Difficulty: integration of differential equations (infinite set of 
trajectories to simulate), time elimination

• Over-approximation to preserve safety property

For continuous systems specified by linear differential inclusions, the 
overapproximated regions can be determined with geometric 
considerations and polytopes computations  

Complex and difficult to implement: pay 
attention to the choice of regions
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Finite discrete time integration (Dang, Chutinan & Krog, Asarin et al., Gérard)

Axx =& uAxx +=&
1−= i

A
i PeP δ

{ }BbAabaBA
VPeP i

A
i

∈∧∈+=⊕

⊕= −

      where
1

δ

• Calculation of series of finite time successor regions, using 
sample-time computation 
– Guaranteed integration: Time step δ, Finite number of steps 

Minkowski sum with
region V that depends
on the bounded
uncertainty u
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Space regions
• Choice of a type of sets for continuous space regions:

– efficiency of their set representation 
– complexity of computation on this type of set (intersection, union, 

dynamic evolution, Minkowski sum)
– Closure of this type of set wrt operations needed for reachability

calculation to reduce complexity and approximation

• Polynomial regions (e.g. Dang, 2006)
• Ellipsoids (e.g. Kurzhanski & Variya, 2000)

– Compact and closed for transformations induced by linear 
dynamics

– Not closed for other operations (ex: Minkowski sum), inducing 
important approximations

• Polyhedral sets
– hyperrectangles – interval computation (Nedialkov et al., 1999)
– Polyhedrons (linear constraints, vertex)
– Zonotopes
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Closure

• Hyperrectangles : all borders are normal to one of 
the basis vectors

• Difficulty: hyperrectangles are not closed for 
continuous dynamics changes (wrapping effect)  

• Express intermediate results in intermediate basis 
to overcome wrapping effect
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Polyhedral sets: Polyhedrons

• Complexity of representation due to iterative 
computation  
– Tight overapproximation
to reduce number of constraints

– Efficient coding 
of constraints 
(Asarin et al., 06): 
overapproximation
to encode constraints 
with lower number 
of bits
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Polyhedral sets: Zonotopes

• Use for high dimension state space due to compact 
representation

• Closed for most operations involved in reachability
computation (linear transformation, Minkowski sum)

• Problems:  reduction of number of generators further 
to iteration of reachability computation, and 
computation of intersection with guards

Planar zonotope
Defined by its center
and 3 generators
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Complexity reduction: Continuous space dimension reduction
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• Projection & uncertainty (e.g. Asarin & Dang, 04; Han & 
Krogh, 05): identify subspaces of state space st projection of state in 
one subspace has low influence on the projection of the state of the other 

• Trajectories similarities (Girard, Pappas et al., 2006): 
– Approximation as a relaxation of the notion of abstraction
– distance between trajectories rather than an inclusion relation
– simulation functions defining approximate simulation relations: 

Lyapunov-like characterization, Algorithms (LMIs, SOS, Optimization)
– reachability computations based on zonotopes
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Analysis of complex systems

Abstraction methods for complexity reduction of systems.

100

10

Linear systems Piecewise affine 
systems

Nonlinear systems Hybrid system

Model complexity

Dimension of the continuous state space

Complex system

Abstraction

Dimension reduction

Hybridization
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Conclusion: Structured presentation of formal 
verification techniques for Hybrid Systems 

• Guaranty correct behavior
– Methods and tools

• Safety properties: reachability and abstraction
• Non decidability results
• Various propositions

– General principles
– Representation of regions
– Algorithms

• Reference: Annual Reviews in Control, Vol 33, 2009, 
p. 25-36, H. Guéguen, M.A. Lebfevre, J. Zaytoon
doi:10.1016/j.arcontrol.2009.03.02
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Perspectives

• Safety verification for real-size applications require 
complementary approaches alternating overapproximation, 
characterization of reachable space, dimension reduction

• Methodology based on clear criteria to guide the choice of 
the approaches and their cooperation for a given class of 
applications and properties

• Integrating such approaches with other control design tools
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