

Human – Robot Cooperation Techniques in Surgery

Alícia Casals

Robotics Group Institute for Bioengineering of Catalonia, Barcelona Universitat Politècica de Catalunya, Barcelona Tech,

15 - 18 June, 2010 Funchal, Madeira - Portugal

7th International Conference on Informatics in Control, Automation and Robotics

Progress in Surgical Procedures

Open surgery

Minimally Invasive Surgery

- Not enough intelligent robots
- Human limitations to operate directly
 - Access to the working space
 - Unsafe environments
 - Improving Human / Robot performances

$$F_{a, slave}(s) = Z_{c}(s) (a V_{master}(s) - V_{slave}(s))$$

Comanipulation / Cooperation

$$V(s) = Y(s) \cdot F(s))$$

Human - Robot Cooperation levels

Processed Vision (Virtual Reality) Surgical Environments

 Hard tissues {
(Skull or pelvis)
Stereotaxis not applicable
) Stereotaxis techniques applicable (Femur or humerus)

(Nerves or tendons) (Heart or lungs)

• Soft tissues { Plastic parts (Kidney or liver) { Static (Brain or pancreas) Elastic parts { Dinamic

Туре	Robot contribution	The role of cooperation
Microsurgery		
Neurosurgery		
Transcutaneous		
Percutaneous		
Intracavity		
Orthopedics		

Туре	Robot contribution	
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	
I	l	

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	

$$\frac{1}{y_1} + \frac{1}{y_2} = \frac{1}{f}$$

Туре	Robot contribution	Cooperation needs	
Microsurgery	3D surface generation, task precision, 6DoF teleoperation		
Neurosurgery	3D trajectories, increase precision and minimizing damage		

Туре	Robot contribution
Microsurgery	3D surface generation, task precision, 6DoF teleoperation
Neurosurgery	3D trajectories, increase precision and minimizing damage

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	Real time supervision and anatomic adaptation
Neurosurgery	3D trajectories, increase precision and minimizing damage	
	Ŭ	

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	
Neurosurgery	3D trajectories, increase precision and minimizing damage	

Mice

Active proves

Prebended coaxial tubes

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	Real time supervision and anatomic adaptation
Neurosurgery	3D trajectories, increase precision and minimizing damage	Real time guidance, validation or corrections
		<image/>

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	Radioactive
Neurosurgery	3D trajectories, increase precision and minimizing damage	
Transcutaneous	Precise positioning	Gamma rays

Gamma Knife

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	
Neurosurgery	3D trajectories, increase precision and minimizing damage	
Transcutaneous	Precise positioning	

_

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	Real time supervision and anatomic adaptation
Neurosurgery	3D trajectories, increase precision and minimizing damage	Real time validation and corrections
Transcutaneous	Precise positioning	Adjustments and surveillance

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	
Neurosurgery	3D trajectories, increase precision and minimizing damage	
Transcutaneous	Precise positioning	
_		

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	
Neurosurgery	3D trajectories, increase precision and minimizing damage	
Transcutaneous	Precise positioning	

• Previous systems: Based on a beam of the tumor size

Beam size: from 4cm to 15 cm

- Robot performances: Allow focalization in the precise tumor area (adapt to its shape)
 - Beam size: ~3 mm
 - Scanning over the tumor area

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	
Neurosurgery	3D trajectories, increase precision and minimizing damage	
Transcutaneous	Precise positioning	

CyberKnife

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	
Neurosurgery	3D trajectories, increase precision and minimizing damage	RCM - Stage 2 PAKY RCM - Stage 1 PAKY
Transcutaneous	Precise positioning	Tdof Passive Arm
Percutaneous	Precise advancing and avoidance	RCM Control Joystick (2dof - R1 & R2)
		PAKY Control Avystick (Idof - T)

Electonic Contiol Box

Custom Side Rail -

Туре	Robot contribution	Cooperation needs	
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	the	
Neurosurgery	3D trajectories, increase precision and minimizing damage		
Transcutaneous	Precise positioning		1
Percutaneous	Precise advancing and avoidance		9
		6	

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	
Neurosurgery	3D trajectories, increase precision and minimizing damage	
Transcutaneous	Precise positioning	
Percutaneous	Precise advancing and avoidance	

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	Real time supervision and anatomic adaptation
Neurosurgery	3D trajectories, increase precision and minimizing damage	Real time validation and corrections
Transcutaneous	Precise positioning	Adjustments and surveillance
Percutaneous	Precise advancing and avoidance	Real time restrictions identification and safety
Intracavity	Ergonomical dexterity, anti stress operation and precision	
Orthopedic		

Intracavity	Ergonomical dexterity, anti stress operation and precision	
Orthopedic		

Cooperation needs

Intracavity	Ergonomical dexterity, anti stress operation and precision	
Orthopedic		

Туре	Robot contribution	Cooperation needs	
Microsurgery	3D surface generation, task precision, 6DoF teleoperation		
Neurosurgery	3D trajectories, increase precision and minimizing damage		
Transcutaneous	Precise positioning		
Percutaneous	Precise advancing and avoidance		
Intracavity	Ergonomical dexterity, anti stress operation and precision		0
Orthopedic			1

Intracavity	anti stress operation and precision	
Orthopedic		

Cooperation needs

Intracavity	Ergonomical dexterity, anti stress operation and precision	
Orthopedics		

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	Real time supervision and anatomic adaptation
Neurosurgery	3D trajectories, increase precision and minimizing damage	Real time validation and corrections
Transcutaneous	Precise positioning	Adjustments and surveillance
Percutaneous	Precise advancing and avoidance	Real time restrictions identification and safety
Intracavity	Ergonomical dexterity, anti stress operation and precision	Manual guidance, multiplexed arms
Orthopedic	Precision, complex fitting, CAD/CAM	

Physical reaction

Proposta de "ciència" en l'estratègia de cooperació (en vectorial)

Туре	Robot contribution	Cooperation needs
Microsurgery	3D surface generation, task precision, 6DoF teleoperation	Real time supervision and anatomic adaptation
Neurosurgery	3D trajectories, increase precision and minimizing damage	Real time validation and corrections
Transcutaneous	Precise positioning	Adjustments and surveillance
Percutaneous	Precise advancing and avoidance	Real time restrictions identification and safety
Intracavity	Ergonomical dexterity, anti stress operation and precision	Manual guidance, multiplexed arms
Orthopedics	Precision, complex fitting, CAD/CAM	Tempos control, registration adjustments