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Cascades in Infrastructure Networks 
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Vulnerability of Transportation Systems	
  

3 

 “The	
   Transportation	
   Sector‘s	
   components	
   are	
   susceptible	
   to	
   the	
  
consequences	
   of	
   natural	
   disasters	
   and	
   can	
   also	
   make	
   attractive	
  
terrorist	
   targets.	
   The	
   sector's	
   size,	
   its	
   physically	
   dispersed	
   and	
  
decentralized	
  nature,	
   the	
  many	
  public	
  and	
  private	
  entities	
   involved	
   in	
  
its	
   operations,	
   the	
   critical	
   importance	
   of	
   cost	
   considerations,	
   and	
   the	
  
inherent	
   requirement	
   of	
   convenient	
   accessibility	
   to	
   its	
   services	
   by	
   all	
  
users	
   -­‐	
   these	
   aspects	
   combine	
   to	
   make	
   transportation	
   vulnerable	
   to	
  
security	
  threats.”	
  

- Volpe National Transportation Systems Center Report ‘03 



Disturbances in Urban Transportation Networks 

•  Accidents, road closures, inclement weather, etc. 
•  Load balancing related to adaptive road choice behavior of drivers 
•  Cascade effects can magnify the effect of disturbance 
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Typical Monday at 6:30 p.m. Monday November 7, 2011, 6:30 p.m. 
(Courtesy: Google Maps) 

disturbance 



Urban Transportation Network 
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[A traffic jam in China] 
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Objective:  Develop a dynamical model for transportation  
and derive metrics for their resilience  



Outline  
• Dynamical network flow formulation 
 
• Stability of equilibria 

• Margins of resilience 
 
• Cascade effects 

• Conclusions 
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Transportation as Network Flow 

•  Directed acyclic graph with single O/D pair 

•  Constant arrival rate       at the origin  

•  Driver route choice decisions + traffic physics determine  
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Static Network Flow 
•  Link flow capacity: 

•                            feasible    : 
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•  Max flow min cut theorem: 

 

 
•  Static perspective: link outflow always equals inflow  
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Wardrop Equilibrium 
•     : distribution of driver 

population by route preference 
•      induces static 
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Wardrop equilibrium: 
 
•  delay      on any used path is no greater than the delay on any other path 
 
•  globally stable under best response dynamics if 
 
•                                    evolves as per global best response  strategy by drivers  
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Transportation physics 

• Congestion dynamics 

 
•  Flow conservation 
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  : density on link  
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Rate of change of        = flow into link i – flow out of link i  
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Flow function 
•  Outflow on a link depends on the traffic density on that link:   
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Outflow is not necessarily 
equal to inflow on a link 

  : density on link  
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Multi-scale driver decision model  

 

•  Drivers take decision at every node 

•  Node-wise decisions influenced by: 
•  global information available infrequently    

•  real-time node-specific information 
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Local route choice decisions 
•  At node    ,   

•  Locally responsive routing policy       : 
•  Consistency: 

•  if local observations match expectation, then follow suit 
 

•  Sensitivity: 
•  locally prefer links with less congestion   
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Example: i-logit 

 
 
•  Myopia prevents passiveness; inertia prevents aggressiveness 
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Dynamical network flow 

•  Congestion dynamics (fast scale) 
 

 

•  Global decision dynamics (slow scale) 
 

•  Flow conservation 
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Illustration of Network Flow Dynamics 

17 



Stability of Wardrop equilibrium 
  

Theorem: If 

•             min-cut capacity 
• Drivers do not update their global decisions sufficiently 

fast w.r.t. traffic dynamics (small     ) 

•   Then Wardrop equilibrium is globally stable. 
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Perturbations: infinite density capacity 
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Network Response to Small Perturbation 
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Network Response to Large Perturbation 
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Transferring Property 
•  The perturbed network is fully transferring w.r.t. eqm        (not  

necessarily Wardrop)  under       if : 
     with initial condition 

 
 
 
 
 

•  Margin of resilience for a given     and           
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Upper Bound on Margin of Resilience 

                                                                   

•       , margin of resilience ≤ min cut residual capacity   
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A Tighter Upper Bound 

 
 
 

•       , margin of resilience ≤ min node cut residual capacity                                                       
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Sufficiency for Margin of Resilience 
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Possible loss of resilience due to:   

§  Passive routing 

§   Aggressive routing  



Optimality of Locally Responsive Routing 
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•        creates the perfect balance between passive and aggressive routing 

•   For       , margin of resilience =    
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Perturbations: finite density capacity 
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Finite density capacity constraints cause upstream cascades 



Upstream Cascades  
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Upstream Cascades can Increase 
Resilience 
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Unbounded density capacity Upstream cascades due to 
bounded density capacity 

Upstream cascades compensate for lack of downstream information 



Upper Bound on Margin of Resilience 
•  Backward recursion algorithm: 

•       b: min downstream perturbation needed to shut down node   
•              : min perturbation to remove capacity       from link   

•  Margin of resilience           
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Backward Recursion Algorithm

dv: minimum downstream disturbance to shut down node v

ci(xi): minimum disturbance to remove capacity xi from link i

ci(xi) = min{xi, dτ(i)}
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Implications for Intelligent Transportation 
Systems 
• Green light control 

•  to influence routing G 

• Congestion pricing 
•  to influence equilibrium 

 
• Automated driving 

•  to influence the flow function 
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Conclusions 
• Dynamical model for transportation networks 

• Stability of equilibria under multiscale driver decisions 

• Robust route choice behavior 

• Characterization of margins of resilience 

• Effect of cascades on the margins 
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Future Work 
• Multiple origins and destinations 
 
 
• Micro foundations: spatial queuing networks  

 
 

• Control and mechanism design: green light control, 
dynamic tolls 
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