

Human-Robot Intelligent Cooperation: Methodologies for Creating Human-Robot Heterogeneous Teams

Luís Paulo Reis

lpreis@dsi.uminho.pt

Member of the Directive Board of LIACC – Artificial Intelligence and Computer Science Lab. Associate Professor at School of Engineering, University of Minho, Portugal President of the Portuguese Society for Robotics

Al and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Presentation Outline

- Artificial Intelligence, Intelligent Robotics, Simulation and Coordination of Multi-Robot Teams
- FC Portugal Project Coordination of Multi-Robot RoboCup Teams
- Intellwheels Project Intelligent Wheelchair with Flexible Multimodal Interface
- Hearbot Project Robot Dancing and Robot Audition
- Conclusions and Future Work

Artificial Intelligence

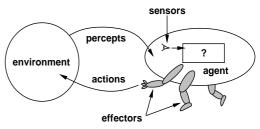
• Intelligence

"Capacity to solve new problems through the use of knowledge"

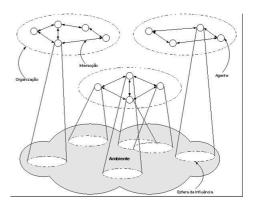
• Artificial Intelligence

 "Science concerned with building intelligent machines, that is, machines that perform tasks that when performed by humans require intelligence"

Al and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions


Autonomous Agents and Multi-Agent Systems

Agent Traditional Definition:


"Computational System, situated in a given **environment**, that has the ability to **perceive** that environment using **sensors** and **act**, in an **autonomous way**, in that environment using its **actuators** to fulfill a given **function**."

Multi-Agent System:

- Agents exhibit autonomous behavior
- Interact with other agents in the system

From Russel and Norvig, "Al: A Modern Approach", 1995

Human-Robot Intelligent Cooperation, Luis Paulo Reis, ICINCO 2013, Reykjavík, Iceland, July 2013 3

Intelligent Robotics

Robotics

- Science and technology for projecting, building, programming and using Robots
- Study of Robotic Agents (with body)
- Increased Complexity:
 - Environments: Dynamic, Inaccessible, Continuous and Non Deterministic!
 - Perception: Vision, Sensor Fusion
 - Action: Robot Control (humanoids, increasing DOFs)
 - Robot Architecture (Physical / Control)
 - Navigation in unknown environments
 - Interaction with other robots/humans
 - Multi-Robot Systems

Al and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Current State of Robotics

- Used to Perform:
 - Dangerous or difficult tasks to be performed directly by humans
 - Repetitive tasks that may be performed more efficiently (or cheap) than when performed by humans

Robots have moved from manufacturing, industrial applications to:

- Domestic robots (Pets AIBO, vacuum cleaners)
- Entertainment robots (social robots)
- Medical and personal service robots
- **Military** and surveillance robots
- Educational robots
- Intelligent buildings
- Intelligent vehicles (cars, submarines, airplanes)
- New industrial applications (mining, fishing, agriculture)
- Hazardous applications (space exploration, military apps, toxic cleanup, construction, underwater apps)

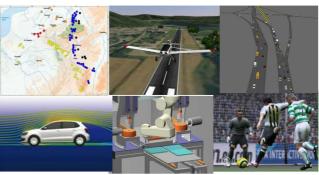
Multi-Robot Applications and Human-Robot Teams!

Coordination in Multi-Robot Systems

- Agents/Robots don't live alone ...
- Necessary to work in group...
- Human-Robot Interaction
- Multi-Robot Coordination

Coordination : "to work in harmony in a group"

- Dependencies in agent actions
- Global constraints
- No agent, individually has enough resources, information or capacity to execute the task or solve the problem


- Efficiency: Information exchange or tasks division
- Prevent anarchy and chaos: Partial vision, lack of authority, conflicts, agent's interactions

Al and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

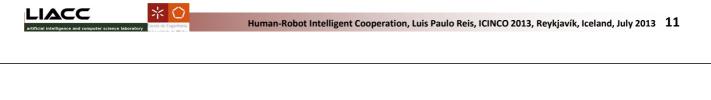
Agent-Based Simulation

- Simulation: Imitation of some real thing, state of affairs, or process, over time, representing certain key characteristics or behaviours of the physical or abstract system
- Applications:
 - Understand system functioning
 - Performance optimization
 - Testing and validation
 - Decision making
 - Training and education
 - Test future/expensive systems
- Applied to complex systems impossible to solve mathematically
- Agent Based Modeling and Simulation

Robotic Competitions

Al and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Robotic Competitions - RoboGames


Videos

Robotic Competitions - RoboGames

Videos

Al and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Robotic Competitions

Robotic Competitions - RoboCup

RoboCup

Al and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Main Research Questions

How to **Coordinate** heterogeneous **Multi-Robot Teams** executing **flexible tasks** in dynamic, adversarial environments?

How to define **Flexible Human-Robot Interaction** methods enabling Human-Robot Cooperation in dynamic environments?

Key Issues in Human-Robot Teams

Sensor Fusion and Multi-Sensor Intelligent Perception Multi-Robot Coordination/Flexible Strategy Adaptive Strategy Flexible Multimodal Interaction Human Robot Cooperation - Shared Control Adaptive Interaction Realistic Simulation Bridging the Gap between Simulation and Robotics

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

RoboCup: Objectives

- Joint International Project:
 - (Distributed) Artificial Intelligence
 - Intelligent Robotics
- Soccer Central Research Topic:
 - Very complex collective game
 - Huge amount of technologies involved:
 - Autonomous Agents, Multi-Agent/Multi-Robot Systems, Cooperation, Communication, Strategic Reasoning, Robotics, Sensor Fusion, Real-Time Reasoning, Machine Learning, etc

Main Goal of the RoboCup Initiative:

"By 2050, develop a team of fully autonomous humanoid robots that may win against the human world champion team in soccer!"

RoboCup: Official Competitions

1997 – Nagoya (Japan) 1998 – Paris (France) 1999 – Stockholm (Sweden) 2000 – Melbourne (Australia) 2001 - Seattle (USA) 2002 – Fukuoka (Japan) 2003 – Padua (Italy) 2004 – Lisbon (Portugal) 2005 – Osaka (Japan) 2006 – Bremen (Germany) 2007 – Atlanta (USA) 2008 – Suzuhu (China) 2009 – Graz (Austria) 2010 – Singapore (Singapore) 2011 – Istanbul (Turkey) 2012 – Mexico City (Mexico) 2013 – Eindhoven (Holland) 2014 – João Pessoa (Brazil)

German Open (European), Japanese Open, Australian Open, American Open, Portuguese Open, Dutch Open, Iranian Open, China Open, ...

Participant/Awarded Countries:

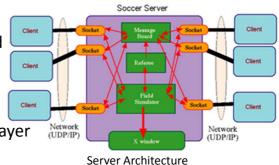
Germany, USA, Japan, China, Iran, Portugal, Australia, Holland, Brazil, Singapore

Soccer Leagues:

Sim2D, Sim3D (Humanoids), Coach, MR **Robots Small-Size Robots Middle-Size** Standard Platform (Aibo; NAO) Humanoid Robots (Kid, Adult) RoboCup Rescue Simulation, Virtual, Robotic

RoboCup Junior RoboCup@Home

RoboCup@Work


Human-Robot Intelligent Cooperation, Luis Paulo Reis, ICINCO 2013, Reykjavík, Iceland, July 2013 17

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

RoboCup Leagues: Simulation 2D

- Virtual Robots on a 105*68m Virtual Field
- Teams of 11 players plus a coach
- 2D Simulator+Monitor (Client-Server System) .
- Robots controlled by different agents
- Agents (player's brains) control a single player
- Simulator/Server:
 - Receives agent commands
 - Simulates objects' movement
 - Sends perceptions to agents
- **Simulation Characteristics**
 - Real-Time Human
 - Distributed 24 Processes
 - Inaccessible (hidden), Continuous and Dynamic World
 - Errors in: Perception, Movement and Action
 - Limited Resources and Communication
 - Multi-Objective

 $\times \Omega$

RoboCup Leagues: Simulation 2D

• 1998: Simple Passing and Good Individual skills

Videos

RoboCup Leagues: Simulation 2D

2000: Formations and Soccer like Playing

Videos

Human-Robot Intelligent Cooperation, Luis Paulo Reis, ICINCO 2013, Reykjavík, Iceland, July 2013 21

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Simulation 3D League (Humanoids)

- Third dimension adds complexity
- Complexities from real robots
- **Realistic physics and Robot Model:**
 - Started with sphere in 2004 •
 - Humanoids in 2007 .
 - NAO Robot Model: 2008
 - Heterogeneous Robots: 2013
- Strong relation with SPL
- 2 vs 2 -> 6 vs 6 -> 9 vs 9 -> 11 vs 11
- Server/Simulator (SimSpark)
 - Updates world state •

 $\times \bigcirc$

- Forces the "laws of physics": collisions, drag, gravity, ...
- Send sensor information (perceptors)
- Executes actions (effectors)
- Enforces soccer rules referee
- Very difficult to create competitive skills by hand!

Simulation 3D – Spheres model

- 2004-2005: Very Basic playing!
- 2006: Formations/High-level playing!

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Simulation 3D – Spheres model

AllemaniACs3D 0 ●	Goal_Right t=311.46	3 FCPortuga106
	a see see groot see see se	
• •		

Simulation 3D – Humanoid model

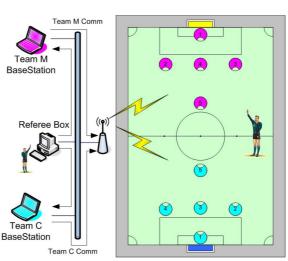
- 2007-2010: Very Basic playing!
- 2011: Formations/High-level playing!

Videos

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Simulation 3D – Nao model

Simulation 3D – Nao model



AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Middle Size League

- Robots are completely autonomous •
- 5 robots per team
- Robots around 50x50cm and 80cm height •
- Field 18mx12m, green with white lines
- MSL rules based on official FIFA laws

Middle Size League

- 1998-2007: Very Basic playing! Individual Dribbling!
- 2008: Formations SBSP/High-level playing/Setplays!

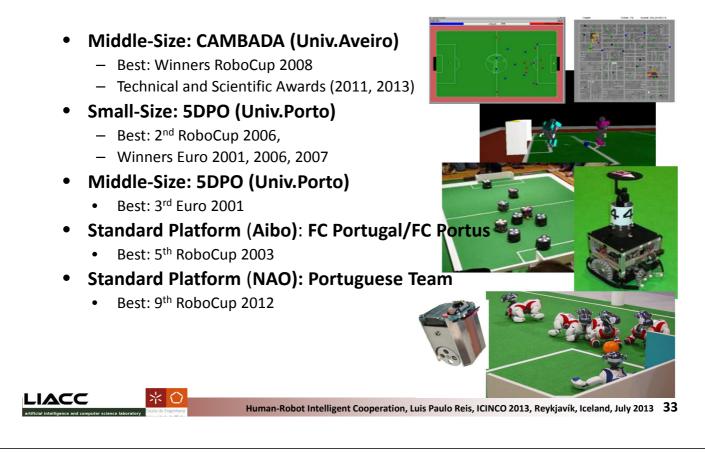
AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Middle Size League

Videos

Flexible Strategy for RoboCup

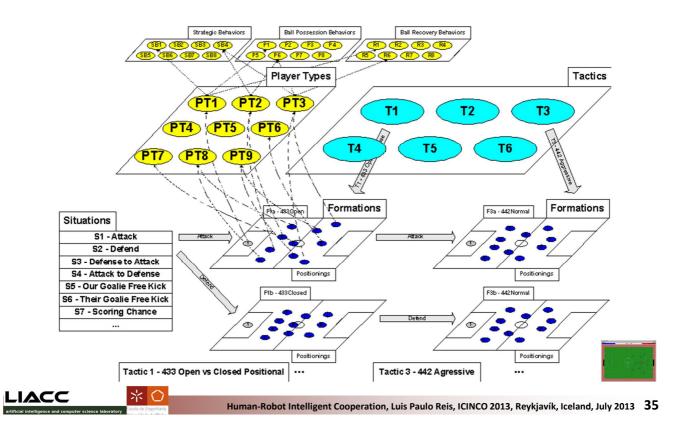
- RoboCup Leagues: Simulation 2D, Simulation 3D, Small-Size, Middle-Size, SPL and Search and Rescue
- Applications in four distinct teams:
 - FC Portugal (University of Porto/Aveiro/Minho)
 - Simulation 2D, Simulation 3D, Coach, MR, Rescue, SPL
 - **CAMBADA** (University of Aveiro) Prof. Nuno Lau
 - Middle-Size League, RoboCup@Home
 - 5DPO (University of Porto) Prof. A.P.Moreira
 - Small-Size League, Middle-Size League
 - Portuguese Team (University of Porto/Aveiro/Minho)
 - SPL Standard Platform League
- More than 40 awards in International Competitions for these 4 Teams!


AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Our Teams: University of Porto/Aveiro/Minho

- Simulation 2D: FC Portugal
 - Best: Winners RoboCup 2000,
 - Winners Euro 2000, Euro 2001
 - Scientific Award 2013
 - Simulation 3D: FC Portugal
 - Best: Winner RoboCup 2006,
 - Winners Euro 2006, Euro 2007
 - Scientific Award 2013
- Simulation Coach: FC Portugal
 - Best: Winner RoboCup 2002,
 - 2nd RoboCup 2003, 2004
- Simulation MR League: FC Portugal
 - Best: 2nd RoboCup 2007
- Rescue Simulation: FC Portugal
 - Best: Winner Euro 2006

Our Teams: University of Porto/Aveiro/Minho


AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

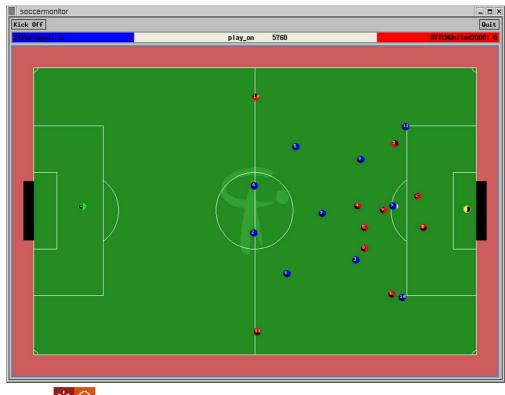
The Coordination Problem

- Coordinate autonomous robots decisions to carry out team tasks as efficiently as possible
- Coordination challenges
 - Strategy
 - Coaching
 - Role assignment
 - Formation
 - Plan execution
 - Communication

Formalization of a Team Strategy



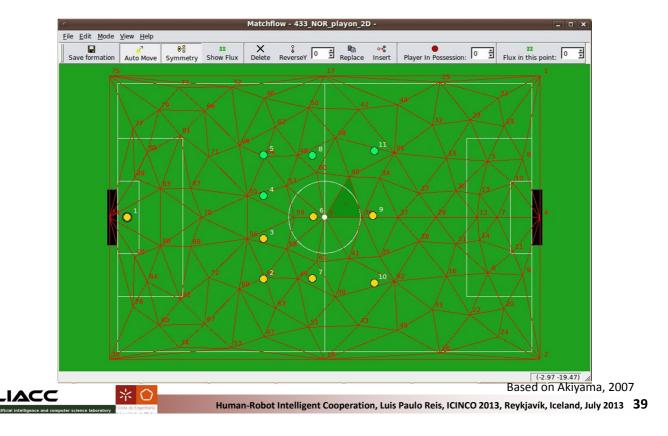
AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions


Formations in Robotic Soccer

- Formations are essential concept in multi-robot teams:
 - Provide a coordination framework:
 - tasks/role assignment
 - Real impact on team performance
 - Can/should be adapted to team and opponent capabilities
 - Common concept with military units coordinated movements or real soccer formations

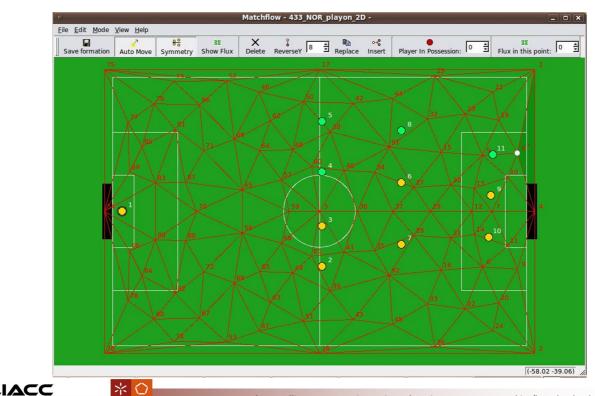
Formation Models

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions



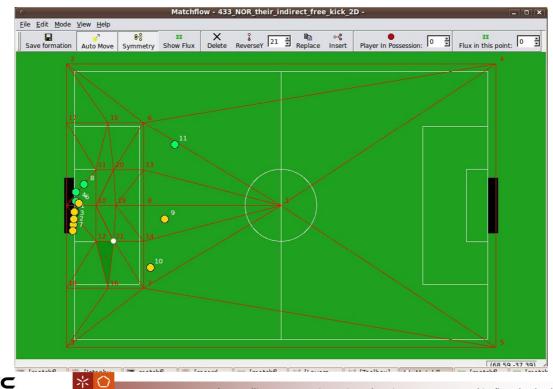
SBSP vs SPAR

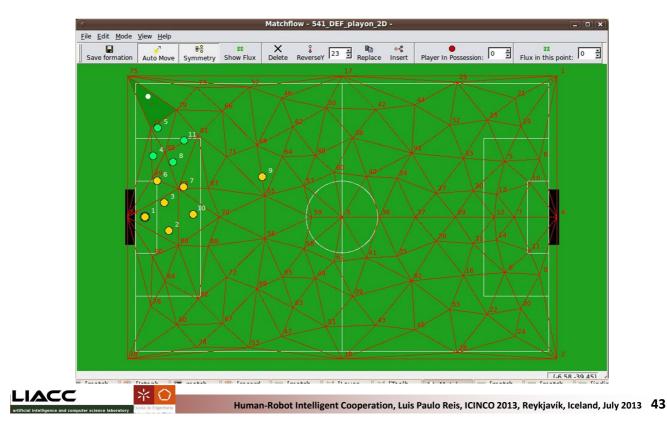
Role based models



ACC

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

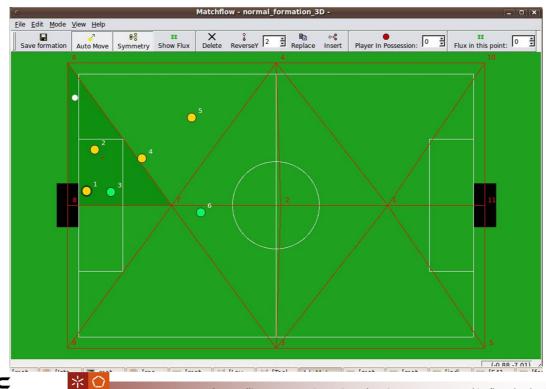

SBSP with Delaunay Triangulation



AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

SBSP with Delaunay Triangulation

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions


SBSP with Delaunay Triangulation

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

SBSP with Delaunay Triangulation

Formations in the MSL

Videos

Al and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Formations in the MSL

SBSP with Flux

• Calculates Flux, Safety and Easiness of all possible points considering the tactic in use!

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

DPRE - Dynamic Positioning and Role Exchange

- Dynamic Exchange of Positionings and Behaviors based on utility:
 - Distances from players positions to their strategic positions
 - Positioning importance and adequacy of agents
- DPRE improves the robotic team collective performance
- Important against opponents with similar collective capabilities

Setplays: Concept and Definition

Simple, pre-defined but flexible plans, which describe cooperation and coordination between agents/robots

- Defined before the game by a domain expert
- Human readable language (high abstraction level)
- Selected, Instantiated and executed at run-time (text file)
- Easy to define and change

* (

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Setplay Definition

(setplay :name simpleCorner

:players (list (playerRole :roleName CornerP)

(playerRole :roleName receiver) (playerRole :roleName shooter))

:steps (seq (step :id 0 :waitTime 15 :abortTime 70

:participants

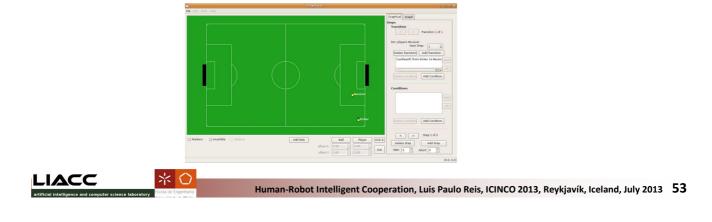
(list (at CornerP (pt :x 52 :y 34)) (at receiver (pt :x 40 :y 25)) (at shooter (pt :x 36 :y 2)))

:condition (playm fk_our) :leadPlayer CornerP

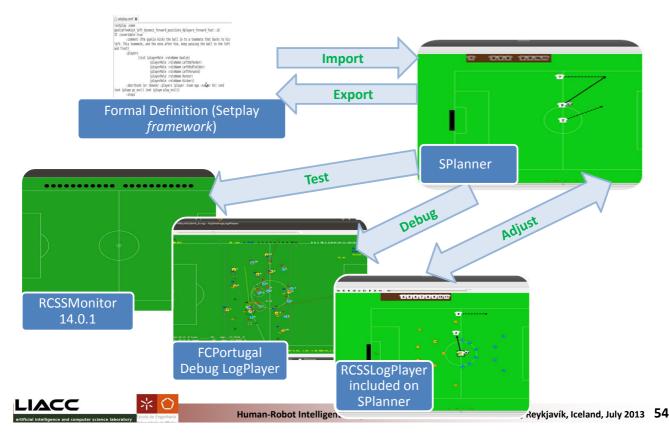
:transitions (list

(nextStep :id 1:condition (canPassPl :from CornerP :to receiver) :directives (list

> (do :players CornerP :actions (bto :players receiver)) (do :players receiver :actions (receivePass))))))


> > \times

(step :id 1 :waitTime 5 :abortTime 70 :participants (list (at CornerP (pt :x 52 :y 34)) (at receiver (pt :x 40 :y 25)) (at shooter (pt :x 36 :y 2))) :condition (and (bowner :players receiver) (playm play on)) :leadPlayer receiver :transitions (list (nextStep :id 2 :condition (canPassPI :from receiver :to shooter) :directives (list (do :players receiver :actions (bto :players shooter)) (do :players shooter :actions (receivePass)))))) (step :id 2 :abortTime 70 :participants (list (at CornerP (pt :x 52 :y 34)) (at receiver (pt :x 40 :y 25)) (at shooter (pt :x 36 :y 2))) :condition (and (bowner :players shooter) (playm play on)) :leadPlayer shooter :transitions (list (nextStep :id 3 :condition (canShoot :players shooter) :directives (list (do :players shooter :actions (shoot))))))

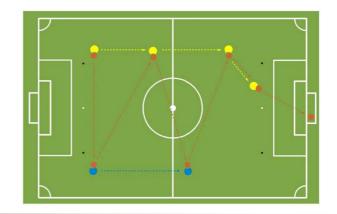

Usage/Interest of Setplay Library

- Setplay Definition/Graphical application
- Implement Conditions and Actions
- Deal with low level Communication
- Decide Setplay start: CBR/ML
- Great flexibility: Application to all RoboCup leagues:
 - Simulation 2D, Simulation 3D, Middle Size, MR League, SPL)

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Setplays: Graphical Definition

Setplays: Graphical Definition


AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Setplays in the MSL

Passes

- Essential for teamplay
- 3 phases
 - Preparation/Alignment
 - Pass
 - Catch ball
- Used by CAMBADA in
 - Playoff
 - Free Challenge 2008
 - Also on Playon!

RolePasser	RoleReceiver
$PassFlag \gets TRYING_TO_PASS$	
Align to receiver	Align to Passer
	$PassFlag \gets READY$
Kick the ball	
$PassFlag \gets BALL_PASSED$	
Move to next position	Catch ball

SetPlays in the MSL

Videos

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

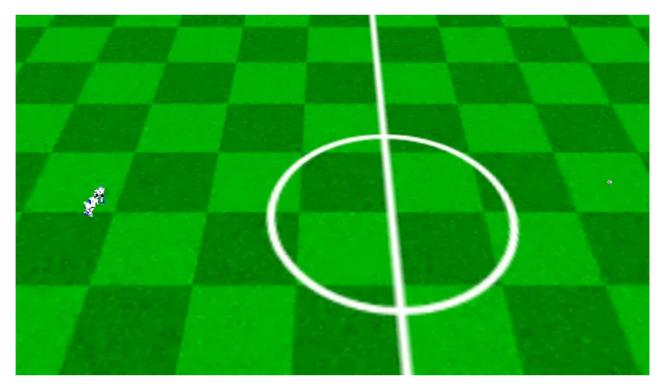
Flexible Strategy for Robotic Teams

Simple Example (from FCPortugal 3D): STWorldState <- FillInWSforStrategy(); Actions <- CallStrategy(STWorldState); ExecuteActions(Actions);

void FCPAgentH::FillInWSforStrategy() {

WorldState& world = SWorldState::getInstance(); strategy->WS_GameTime = world.gTime; strategy->WS_Result = world.game->ourGoals- world.game->opponentGoals; strategy->WS_BallPos = world.ball->position.to2d(); / strategy->WS_BallOwner = world.->ball_owner; strategy->WS_BallIntPos = world.ball->finalPos.to2d(); strategy->WS_MyNumber = world.me->unum; strategy->WS_MyDir = world.me->orientation; for (int t = 1; t <= strategy->ST_NUM_PLAYERS; t++) { strategy->WS_TeamPos[t] = world.getFCPortugalPlayer(t)->position.to2d(); strategy->WS_TeamConf[t] = world.getFCPortugalPlayer(t)->conf; strategy->WS_OppConf[t] = world.getOpponentPlayer(t)->conf;

strategy->WS_PlayMode = world.game->playmode;



}

<section-header><section-header><complex-block><complex-block>

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Results – 20 m Kick!!!

- ※ 🜔

JACC

Results – Formation and Kick

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Results – Formation and Kick

Results – 20 m Kick!!!

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Selected Results: FC Portugal

Competition Results: FCPortugal

2000	1st place in the 2D Simulation League, European 2000	
	1st place in the 2D Simulation League, RoboCup 2000	
2001	3rd place in the 2D Simulation League, RoboCup 2001	
	1st place in the 2D Simulation League, European (GO) 2001	
2002	1st place in the Coach Competition, RoboCup 2002	
2003	2nd place in the Coach Competition, RoboCup 2003	
2004	2nd place in the Coach Competition, RoboCup 2004	
2006	1st place in the 3D Simulation League, RoboCup 2006	
	2nd place in the Small-Size League, RoboCup 2006	
	1st place in the 3D Simulation League, European 2006	
	1st place in the Rescue Sim League, European 2006	
	2nd place in the 2D Simulation League, European 2006	
2007	1st place in the 3D Simulation League, European 2007	
	2nd place in the 2D Simulation League, European 2007	
	2nd place in the Physical Visual. League, RoboCup 2007	

Selected Results: FC Portugal

Competition Results: FC Portugal

2009	3rd place in the 3D Simulation League, European 2009
	3rd place in the 2D Simulation League, European 2009
2010	3 rd place in the 3D Simulation League, European 2010
	3 rd place in the 2D Simulation League, European 2010
2011	2 nd place in the 3D Simulation League, European 2011 (GO)
	2 nd place in the 2D Simulation League, European 2011 (GO)
2012	1 st place in the 3D Simulation League, European 2012 (DO)
	3 rd place in the 2D Simulation League, European 2012 (DO)
	2 nd place in the Rescue Simulation League, European 2012 (DO)
2013	1 st place in the 3D Simulation League, European 2013 (GO)
	3 rd place in the 3D Simulation League, RoboCup 2012
	1 st place in the 3D Sim League, Scientific Challenge, RoboCup 2013
	1 st place in the 2D Sim League, Scientific Challenge, RoboCup 2013

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

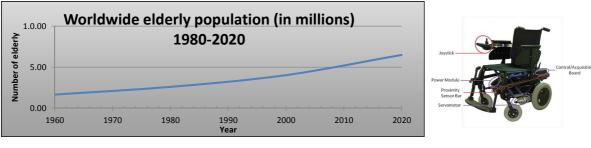
Selected Results: CAMBADA, 5DPO

Competition Results: CAMBADA and 5DPO

1998	5DPO: 3 rd place in the SSL League, RoboCup 2000
2001	5DPO: 1 st place in the SSL League League, European (GO) 2001
	5DPO: 3 rd place in the MSL League League, European (GO) 2001
2002	5DPO: 2 nd place in the SSL League, European (GO) 2002
2003	5DPO: 2 nd place in the SSL League, European (GO) 2003
2004	5DPO: 1 st place in the SSL League, European (GO) 2004
2006	5DPO: 1st place in the SSL League, European 2006
	5DPO: 2nd place in the SSL League, RoboCup 2006
2008	CAMBADA: 1 st place in the MSL League, RoboCup 2008
2009	CAMBADA: 3 rd place in the MSL League, RoboCup 2009
2010	CAMBADA: 2 nd place in the MSL League, European 2010
	CAMBADA: 3 rd place in the MSL League, RoboCup 2010
2011	CAMBADA: 3 rd place in the MSL League, RoboCup 2011
	CAMBADA: 1 ST place in the MSL League Sc. Challenge, RoboCup 2011
2013	CAMBADA: 3 rd place in the MSL League, RoboCup 2013
	CAMBADA: 1 ST place in the MSL League Te. Challenge, RoboCup 2013

Conclusions

- **Coordination** of Teams in Adversarial Environments:
 - Strategy, Formations (SBSP/DT), DPRE, Setplays
- Complete Tactical/Formation Framework and Setplay Framework including graphical interfaces
- Generic Coordination Framework/Library:
 - May be used for coordinating any team:
 - World State -> High-Level Decision!
 - Useful for researching on Low-Level Robotics!
- Methodologies with competition success
- Different robots, distinct cooperative robotic tasks and also to other domains: Rescue, surveillance, military apps



AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Intellwheels Project Motivation

Limited mobility of certain individuals

Increment of the population aged over 60 years

- Individuals with severe physical disabiliti
 - Cerebral palsy

 \times

- Tetraplegia
- Inability to control conventional electric wheelchairs

Intelligent Wheelchair

• Definition:

Robotic device with sensorial and actuation systems and processing capabilities:

- Semi-Autonomous behavior with obstacle avoidance
- Autonomous navigation and planning capabilities
- Flexible Human-Machine interaction
- Cooperation with other IW and with other devices (e.g. automatic doors)

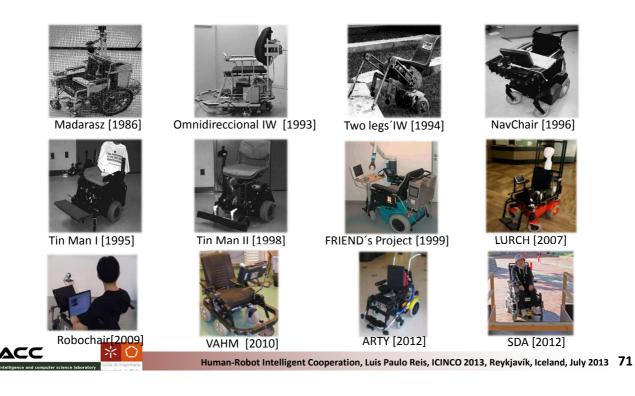
Human-Robot Intelligent Cooperation, Luis Paulo Reis, ICINCO 2013, Reykjavík, Iceland, July 2013 69

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Related Work

- More than 50 IW international projects
 - Obstacle avoidance
 - Human-machine interface
 - MAS very restricted use
 - IW built from scratch

Inexistence

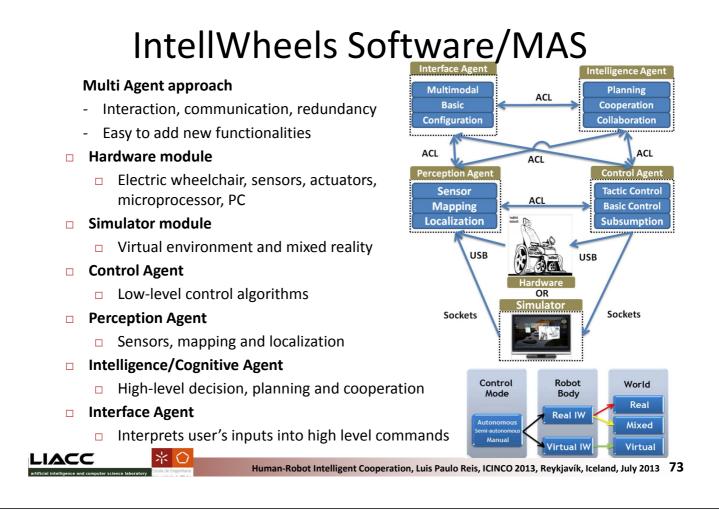

- IW useful in practice:
 - Very low cost
 - Low ergonomic impact
 - Useful for handicapped individuals
- Mixed reality environment
- Flexible multi-modal interface
- IW development platform

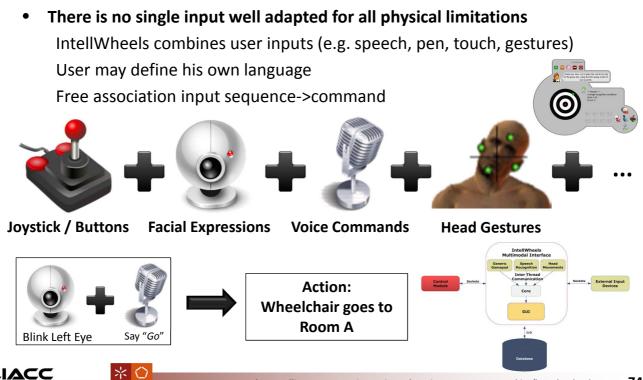
Related Work

Projects and Prototypes

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

IntellWheels - Hardware


- Off-the-shelf devices
 - Human-machine interface
 - Easy to adapt to other wheelchair models
 - Powered wheelchair control
 - Sensors and Processing/interface board
- Basic functions developed in firmware (without PC)
 - Sensor reading
 - Pre-processing odometry
 - Obstacle avoidance

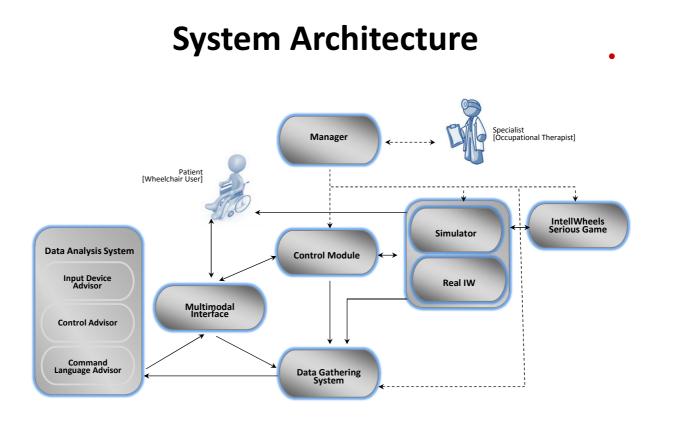

Joystic

er Modul Proximit Sensor F Control/Acquisition Board

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

IntellWheels Multimodal Interface

Real Wheelchair Prototype

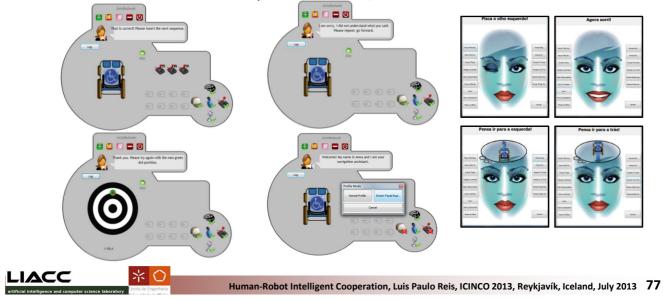

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

※ 🔿

ACC

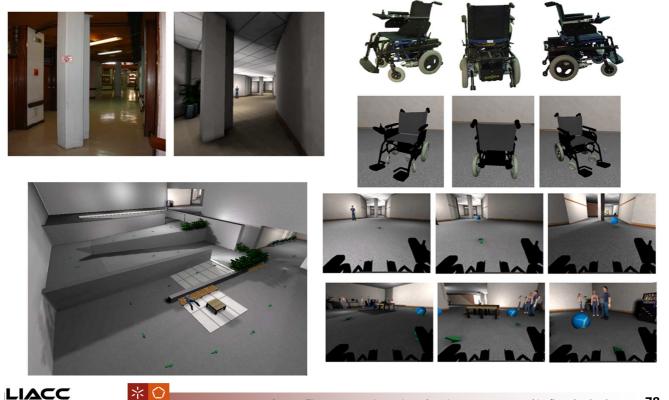
IACC

×

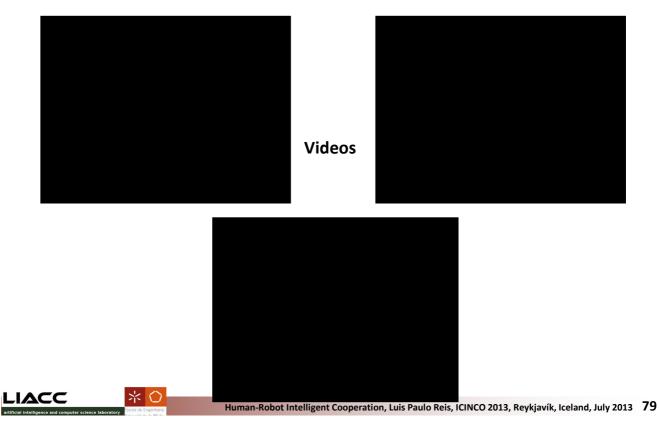


Human-Robot Intelligent Cooperation, Luis Paulo Reis, ICINCO 2013, Reykjavík, Iceland, July 2013 75

Multi-Modal Interface User Profiling


• User Profiling

- Integrated in the Multimodal Interface
- Simple interactive tests that do not involve the IW
- Evaluates user capability to use inputs

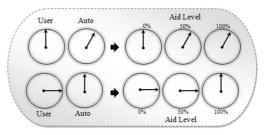


AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Simulated Environment and Wheelchair

IntellSim – Tests With Cerebral Palsy Patients

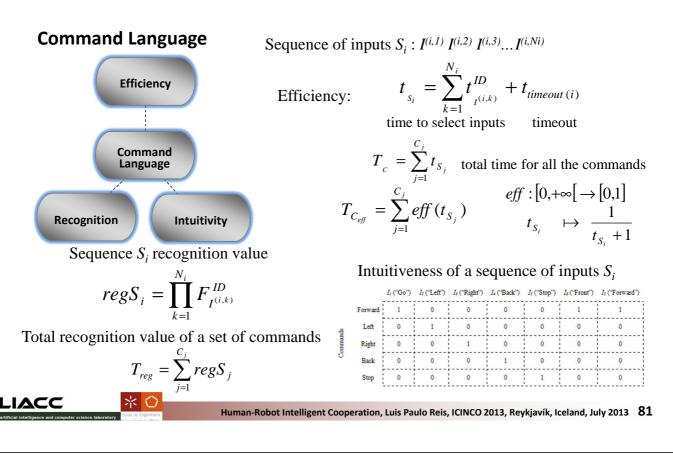
AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions


Wheelchair Control

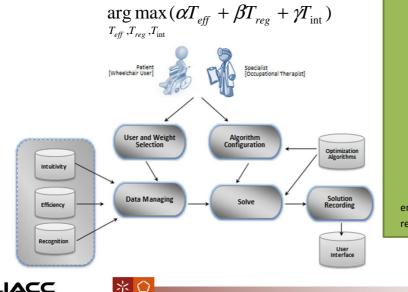
• Shared Wheelchair Control

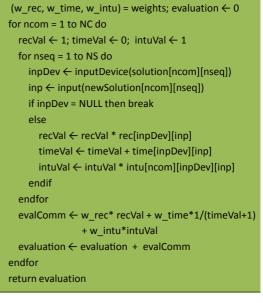
- Aid level of 100%
- Aid level of 50%

🕆 🔿


Manual with obstacle avoidance

Data Analysis System




AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Data Analysis System

Command Language

Maximizes the function composed by the total time efficiency, total recognition and intuitiveness

Data Analysis System

Command Language for Patients

Command Language Advisor

	Patient	Evaluation	Forward	Left	Right	Back	Stop
	P1		111 A. C.				
	Specialist	4.53	wiimote	joystick	joystick	joystick	joystick
	IDAS	4.57	joystick	joystick	joystick	joystick	joystick
	P2						
Data Analysis System	Specialist	4.18	joystick	joystick	joystick	joystick	voice ("stop")
Input Device Advisor Control Advisor Command Language Advisor	IDAS	4.85	joystick	joystick	joystick	joystick	voice ("go")
	P3						ID
	Specialist	3.33	voice ("forward")	wiimote	wiimote	joystick	voice ("stop")
	IDAS	4.51	wiimote	wiimote	wiimote	wiimote	voice ("go")
	P4		11D	1	1	1	(in 10
	Specialist	4.50	voice ("forward")	joystick	joystick	joystick	voice ("stop")
	IDAS	4.60	joystick	joystick	joystick	joystick	voice ("stop")
	P5		145 JD				
	Specialist	4.14	voice ("front")	wimote	wimote	joystick	voice ("stop")
	IDAS	4.40	wiimote	wiimote	voice ("turn")	joystick	voice ("stop")
	P6		wiimote	investigle	joystick	joystick	joystick
	Specialist	4.13	wiimote	joystick wiimote	wimote	wimote	wiimote
	IDAS P7	4.38	winnote	winnote	winnote	winnote	winnote
	-	4.49	voice ("front")	joystick	joystick	joystick	voice ("stop")
	Specialist IDAS	4.49	joystick	joystick	joystick	voice ("back")	voice ("stop")
	P8	4.00	Joysuck	Joysuck	Joysuck	voice (back)	voice (stop)
		2.51	wiimote	joystick	joystick	joystick	joystick
	Specialist IDAS	3.51 4.20	wiimote	wimote	wiimote	wiimote	wiimote
	P9	4.20	winnote	winnote	williote	williote	winnote
Mean of DAS evaluation higher than mean of	Specialist	3.70	voice ("forward")	wiimote	wiimote	joystick	voice ("stop")
-	IDAS	4.75	joystick	joystick	joystick	joystick	joystick
evaluation of the command language	P10	4.75	Joysuck	Joysuca	Joysuca	Joysuca	Joysuck
recommended by specialist (p value = 0.002)	Specialist	4.11	voice ("forward")	voice ("left")	voice ("right")	voice ("turn")	voice ("stop")
	IDAS	4.80	joystick	joystick	voice ("turn")	joystick	voice ("go")
	P11	4.00	Jejenen	Je / e		Jejenne	
	Specialist	4.29	joystick	wiimote	wiimote	joystick	joystick
	IDAS	4.30	wiimote	wiimote	wiimote	wiimote	wiimote
	1043	4.50					
		_					
artificial intelligence and computer science laboratory	Intelligent	Coopera	tion, Luis Paulo	Reis, ICINC	CO 2013, Rey	kjavik, lcela	nd, July 2013
- consecutively de Malaine							

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Conclusions

- Many IWs prototypes are being developed:
 - User adaptation is often neglected
 - Rigid Interfaces adapted to a single user (or user group)
- IntellWheels project:

 $\times \cap$

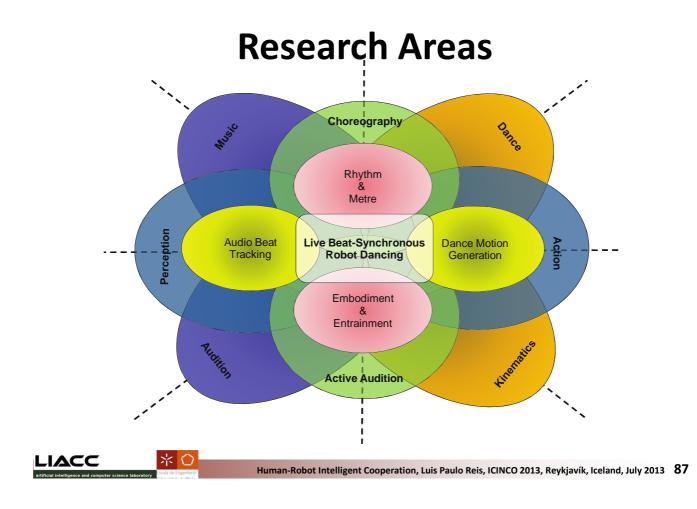
- High-level commands through Multimodal interface
- Interface adapted to users' characteristics
- IntellSim is a **realistic simulator** for testing and training
- Automatic adaptation using user profiling
- **Command language adapted to the user** with better evaluation than recommended by specialists
- Shared control with appropriate aid level

83

Project Awards and Divulgation

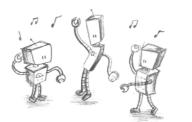
- **2**nd **place** at Festival Nacional de Robótica, International Competition **Freebots**, Portuguese Robotics Open, Instituto Superior Técnico, Lisbon, April 2011
- Galardão da Inclusão at the category Applied Investigation, Teatro José Lúcio da Silva, em Leiria, 3 de Dezembro de 2011, Dia Internacional da Pessoa com Deficiência, Centro de Recursos para a Inclusão Digital (CRID), Instituto Politécnico de Leiria (IPL)
- First Honor Mention/2nd Place at the Award "Ser Capaz" of Associação Salvador, Projeto Intellwheels, Espaço BES Arte & Finança, Lisboa, Portugal, 16 de Janeiro de 2012
- Honor mention, Jaime Filipe Award, "Projeto Cadeira de Rodas Inteligente com Interface Multimodal Flexível" - Instituto Nacional para a Reabilitação, Dia Internacional da Pessoa com Deficiência, 3 de Dezembro de 2012
- **Best Paper Award,** 13th International Conference on Autonomous Robot Systems and Competitions Robotica 2013: "B. M. Faria, Luís Paulo Reis, Nuno Lau, "Manual, Automatic and Shared Methods for Controlling an Intelligent Wheelchair: Adaptation to Cerebral Palsy Users", April 2013
- More than 30 TV, Radio and Newspaper reports

Human-Robot Intelligent Cooperation, Luis Paulo Reis, ICINCO 2013, Reykjavík, Iceland, July 2013 85

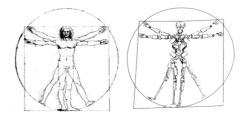

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Robot Dancing Motivation

- Inter-disciplinary area
- Human-robot (non-verbal) interaction
- Design of social intelligent robots
- Robotic entertainment
- Education
- Therapy
- Improve robot's musical and bodily cognition
- Improve robotic expressiveness
- Novel area of research



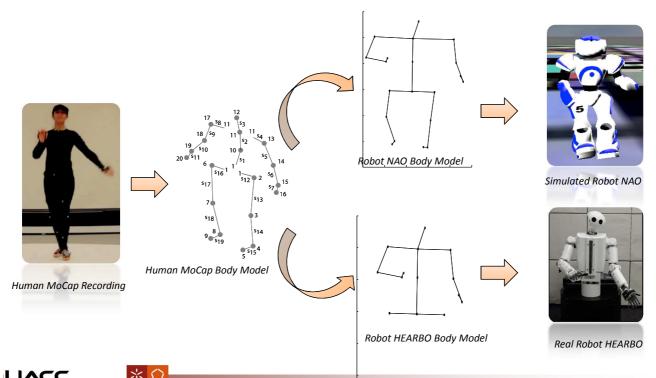
Project Objectives


Implementation of a rhythmic intelligent robot capable of dancing to live music in a real-world environment

1. Online beat-tracking to continuous music stimuli

3. Online beat-synchronous robot dancing

2. Representation and mapping of human dance movements onto humanoid robots

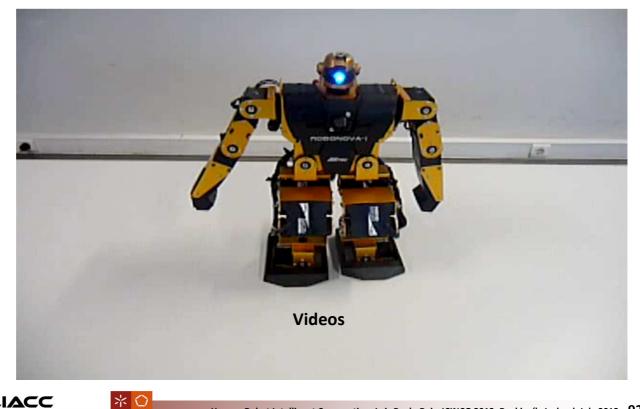


4. Robot audition for real-world robot dancing

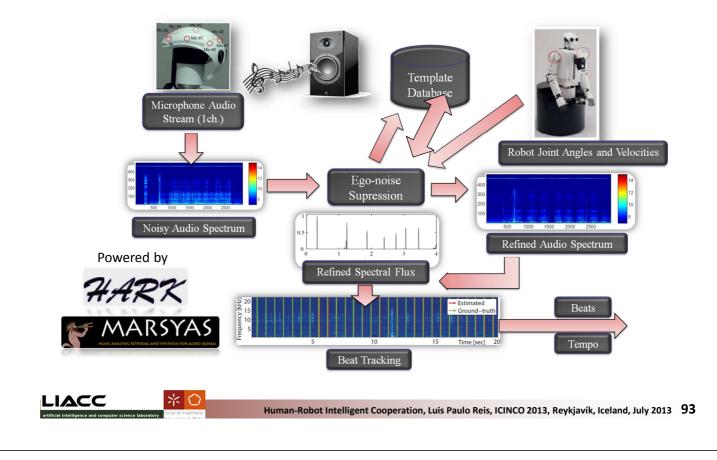
Human-Robot Intelligent Cooperation, Luis Paulo Reis, ICINCO 2013, Reykjavík, Iceland, July 2013 89

AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Mapping Samba onto Humanoids

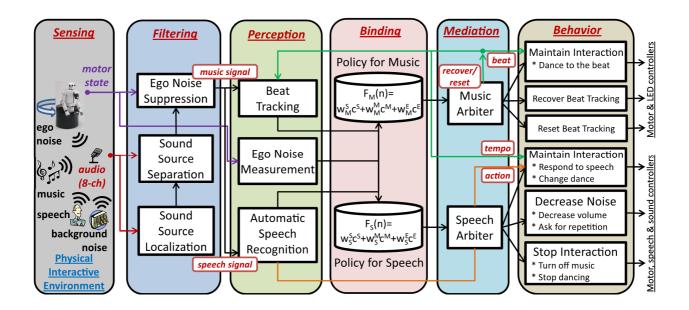


Beat-Synchronous Robot Dancing Demos (1)

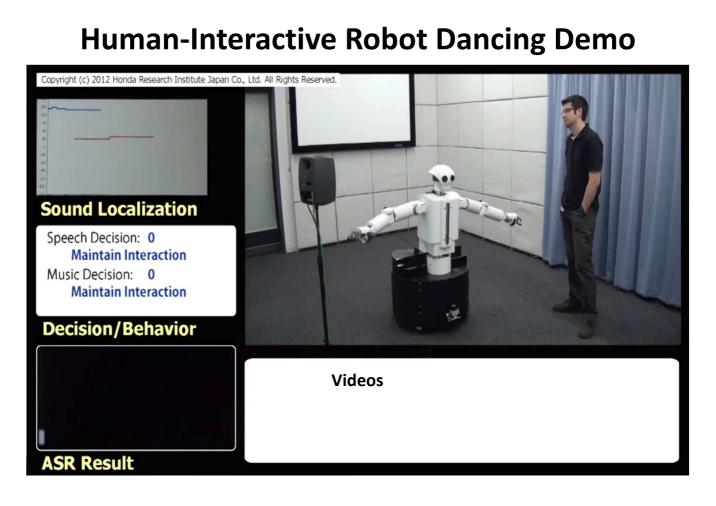


AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Beat-Synchronous Robot Dancing Demos (2)



Live Ego Noise-Robust Beat Tracking Demo


AI and Robotics | Coordination of RoboCup Teams | Intellwheels Project | Robot Dancing Project | Conclusions

Active Audition Framework for Auditory-driven HRI

| * 🔿

JACC

Conclusions

- Key Issues for creating future Human-Robot Teams:
 - Sensor Fusion and Multi-Sensor Intelligent Perception
 - Multi-Robot Coordination/Flexible Strategy
 - Adaptive Strategy
 - Flexible Multimodal Interaction
 - Human Robot Cooperation Shared Control
 - Adaptive Interaction
 - Realistic Simulation
 - Bridging the Gap between Simulation and Robotics
- More than 80 papers ISI Web of Knowledge/Scopus available about these 3 projects (see online slides after the conference)

Human-Robot Intelligent Cooperation: Methodologies for Creating Human-Robot Heterogeneous Teams

Luís Paulo Reis

lpreis@dsi.uminho.pt

Member of the Directive Board of LIACC – Artificial Intelligence and Computer Science Lab. Associate Professor at School of Engineering, University of Minho, Portugal President of the Portuguese Society for Robotics

Human-Robot Intelligent Cooperation, Luis Paulo Reis, ICINCO 2013, Reykjavík, Iceland, July 2013 97