Deep Learning for Robot Perception and Navigation

Wolfram Burgard

Deep Learning for Robot Perception and Navigation

Lifeng Bo, Claas Bollen, Thomas Brox, Andreas Eitel, Dieter Fox, Gabriel L. Oliveira, Oier Mees, Luciano Spinello, Jost Tobias Springenberg, Martin Riedmiller, Michael Ruhnke, Abhinav Valada, Jingwei Zhang, ...

Some facts about the AIS Lab

- 3 senior researchers
- 32 Ph.D. students
- >350 publications
- 1 technician
- 1 secretary
- 1 project manager

- Head of the DFG Cluster of Excellence BrainLinks-BrainTools
- Hosted in the Integrated Robotics Center

First Building Added by Robots to OpenStreetMap

The IRC Mapped by Robots

Freiburg is a Great Place

- Great team
- Great advisor
- Great city
- Great environment
- Great food
- Great wine
- Great 29 days of vacations
- Great 10 national holidays
- Great massage places

In case of any doubt: apply!

Fields of Research

- Mobile robotics
- State estimation and modeling
- Mapping
- Decision-theoretic approaches
- Adaptive techniques and learning
- Scene understanding
- Mobile manipulation
- Multi-robot coordination
- Robots and embedded systems
- Autonomous cars
- Flying vehicles
- .
- Probabilistic robotics

Autonomous Robots

Robots that reliably fulfill their tasks in real-world environments

Neurobots

The Tagesthemen-Report

What our Robots Should do ...

- Perception
 - object recognition
 - human detection
 - sensor interpretation
- Navigation
- Manipulation

Why Deep Learning?

- Multiple layers of abstraction provide an advantage for solving complex (pattern recognition) problems
- Highly successful in computer vision and pattern recognition
- Can serve wide range of fields and applications
- End-to-end systems

Deep Learning in Robotics

- Robot perception is a challenging problem and involves many different aspects such as
 - Scene understanding
 - Object detection
 - Detection of humans
- Opportunities
 - improving perception,
 - manipulation
 - navigation

Multimodal Deep Learning for Robust RGB-D Object Recognition

Andreas Eitel, Jost Tobias Springenberg, Martin Riedmiller, Wolfram Burgard

Autonomous Intelligent Systems

[IROS 2015]

RGB-D Object Recognition

Often too little Data for Deep Learning Solutions

Deep networks are hard to train and require large amounts of data

- Lack of sufficient amount of labeled training data for RGB-D domain
- How to deal with limited sizes of available datasets?

Data often too Clean for Deep Learning Solutions

Large portion of RGB-D data is recorded under controlled settings

- How to improve recognition in realworld scenes when the training data is "clean"?
- How to deal with sensor noise from RGB-D sensors?

Solution: Transfer Deep RGB Features to Depth Domain

Both domains share similar features such as edges, corners, curves, ...

Solution: Transfer Deep RGB Features to Depth Domain

* Similar to [Schwarz et. al 2015, Gupta et. al 2014]

Solution: Transfer Deep RGB Features to Depth Domain

* Similar to [Schwarz et. al 2015, Gupta et. al 2014]

Multimodal Deep Convolutional Neural Network

- Two input modalities
- Late fusion network
- 10 convolutional layers
- Max pooling layers
- 4 fully connected layers
- Softmax classifier

2xAlexNet + fusion net

How to Encode Depth Images?

- Distribute depth over color channels
 - Compute min and max value of depth map
 - Shift depth map to min/max range
 - Normalize depth values to lie between 0 and 255
 - Colorize image using jet colormap (red = near, blue = far)
- Depth encoding improves recognition accuracy by 1.8 percentage points

Solution: Noise-aware Depth Feature Learning

Training with Noise Samples

RGB Network Training

- Maximum likelihood learning
- Fine-tune from pre-trained
 AlexNet weights

Depth Network Training

- Maximum likelihood learning
- Fine-tune from
 pre-trained
 AlexNet weights

Fusion Network Training

- Fusion layers automatically learn to combine feature responses of the two network streams
- During training, weights in first layers stay fixed

UW RGB-D Object Dataset

Category-Level Recognition [%] (51 categories)

Method	RGB	Depth	RGB-D
CNN-RNN	80.8	78.9	86.8
HMP	82.4	81.2	87.5
CaRFs	N/A	N/A	88.1
CNN Features	83.1	N/A	89.4

UW RGB-D Object Dataset

Category-Level Recognition [%] (51 categories)

Method	RGB	Depth	RGB-D
CNN-RNN	80.8	78.9	86.8
HMP	82.4	81.2	87.5
CaRFs	N/A	N/A	88.1
CNN Features	83.1	N/A	89.4
This work, Fus-CNN	84.1	83.8	91.3

Confusion Matrix

Recognition in Noisy RGB-D Scenes

Recognition using

annotated bounding boxes

coffee

Noise adapt. = correct prediction No adapt. = false prediction

Category-Level Recognition [%] depth modality (6 categories)

Noise adapt.	flash- light	сар	bowl	soda can	cereal box	coffee mug	class avg.
-	97.5	68.5	66.5	66.6	96.2	79.1	79.1
\checkmark	96.4	77.5	69.8	71.8	97.6	79.8	82.1

Deep Learning for RGB-D Object Recognition

- Novel RGB-D object recognition for robotics
- Two-stream CNN with late fusion architecture
- Depth image transfer and noise augmentation training strategy
- State of the art on UW RGB-D Object dataset for category recognition: 91.3%
- Recognition accuracy of 82.1% on the RGB-D Scenes dataset

Choosing Smartly: Adaptive Multimodal Fusion for Object Detection in Changing Environments

Oier Mees, Andreas Eitel, Wolfram Burgard

Object Detection in Changing Environments

- How to combine different modalities for detection
- Sensor noise changes with the environment

Depth

RGB

Mixture of Deep Neural Networks for People Detection

General learning approach to fuse different modalities such as RGB + depth + optical flow

Quantitative Results

- Comparison of fusion approaches
 - Late fusion approach with additional twolayer fusion network on top of expert networks
 - Hierarchical mixture of experts
 - Our Mixture of Experts approach (MoDE)
- Adaptive fusion improves performance

Input	Method	AP/Recall	EER
Depth	HOD [Spinello et al. 2012]	-	56.3
RGB-D	HGE [Spinello et al. 2012]	-	87.4
RGB-D-Flow	Ours, CifarNet late fusion	88.0/88.4	88.2
RGB-D-Flow	Ours, MoDE	88.6/90.0	89.3
Adaptive Weighting in Test Set Mean gating assignments per frame

b

C

d

Example Application

Qualitative Results

Gating assignments per bounding box

Quantitative Results

Performance of single and multimodal networks

Input	Method	AP/Recall
RGB	GoogLeNet-xxs	70.0/79.6
RGB	CifarNet	55.3/62.9
Depth	GoogLeNet-xxs	71.6/78.9
RGB-D	GoogLeNet-xxs average	71.1/73.9
RGB-D	GoogLeNet-xxs late fusion	72.0/76.3
RGB-D	GoogLeNet-xxs MoDE	80.4/81.1

Deep Learning for Human Part Discovery in Images

Gabriel L. Oliveira, Abhinav Valada, Claas Bollen, Wolfram Burgard, Thomas Brox

[to be presented at ICRA 2016]

Deep Learning for Human Part Discovery in Images

Human-robot interaction

Robot rescue

Deep Learning for Human Part Discovery in Images

- Dense prediction can provide pixel classification of the image
- Human part segmentation is naturally challenging due to
 - Non-rigid aspects of the body
 - Occlusions

PASCAL Parts

MS COCO

Freiburg Sitting

Network Architecture

- Fully convolutional network
 - Contraction and expansion of network input
 - Up-convolution operation for expansion
- Pixel input, pixel output

Experiments

- Evaluation of approach on
 - Publicly available computer vision datasets
 - Real-world datasets with ground and aerial robots
- Comparison against state-of-the-art semantic segmentation approach: FCN proposed by Long et al. [1]

[1] John Long, Evan Shelhamer, Trevor Darrell, CVPR 2015

Data Augmentation

Due to the low number of images in the available datasets, augmentation is crucial

Spatial augmentation (rotation + scaling)

Color augmentation

PASCAL Parts Dataset

PASCAL Parts, 4 classes, IOU

Method	Head	Torso	Arms	Legs	All
FCN	70.74	60.62	48.44	50.38	57.35
Ours	75.08	64.81	55.61	56.72	63.03
Ours (Spatial)	80.49	74.39	67.17	70.39	73.00
Ours (Spatial +	83.24	79.41	73.73	76.52	78.23
Color)					

PASCAL Parts, 14 classes, IOU

Method	Head	Torso	L U arm	L LW arm	L hand	R U hand	R LW arm	R hand	$egin{array}{c} { m R} \\ { m U} \\ { m leg} \end{array}$	R LW leg	R foot	L U leg	L LW leg	L foot	Mean
FCN Ours (Spa- tial)	$\begin{array}{c} 74.0\\ 81.8\end{array}$	$\begin{array}{c} 66.2 \\ 78.0 \end{array}$	$\begin{array}{c} 56.6 \\ 69.5 \end{array}$	$\begin{array}{c} 46.0\\ 63.1 \end{array}$	$\begin{array}{c} 34.1 \\ 59.0 \end{array}$	$58.9 \\ 71.2$	44.1 63.0	$\begin{array}{c} 31.0\\ 58.7\end{array}$	$\begin{array}{c} 49.3\\ 65.4 \end{array}$	$\begin{array}{c} 44.5 \\ 60.6 \end{array}$	$\begin{array}{c} 40.8\\ 52.0\end{array}$	$\begin{array}{c} 48.5 \\ 67.9 \end{array}$	$\begin{array}{c} 47.6\\ 60.3 \end{array}$	$\begin{array}{c} 41.2\\ 50.0\end{array}$	$\begin{array}{c} 53.1\\ 66.9 \end{array}$
Ours (Spa- tial+Color)	84.0	81.5	74.1	68.0	64.0	75.4	67.4	61.9	72.4	67.1	56.9	73.0	66.1	57.7	71.7

R = right, L = left, U = upper, LW = lower.

Freiburg Sitting People Part Segmentation Dataset

 We present a novel dataset for human part segmentation in wheelchairs

Input Image

Ground Truth

Segmentation mask

Method	Accuracy	IOU
FCN	59.69	43.17
Ours (Trained on PASCAL)	78.04	59.84
Ours (2 people train - 4 people	81.78	64.10
test)		

Robot Experiments

- Range experiments with ground robot
- Aerial platform for disaster scenario (Segmentation under severe body occlusions)

Range Experiments

Recorded using Bumblebee camera

- Robust to radial distortion
- Robust to scale

(f) 6.0 meters

(e) 5.0 meters

Freiburg People in Disaster

Dataset designed to test severe occlusions

Input Image	Grou	ind Truth		Segment mas	ation k
Method	Head	Torso	Arms	Legs	IOU
FCN Ours	52.71 80.56	62.49 79.45	35.04 63.9 3	43.25 64.91	43.20 71.9 9

Application to Obelix Data

Efficient Deep Models for Monocular Road Segmentation

Gabriel Leivas Oliveira

Wolfram Burgard

Thomas Brox

University of Freiburg, Germany

Motivation

More parameters expansion 1-to-C*Ncl filters per refinement

Terrain Classification using a Late Fusion DCNN Architecture

Snow

Glare

Autonomous Navigation in Outdoor Areas

Terrain Classification using a Late Fusion DCNN Architecture

Semantic Segmentation of Moving Objects using Convolutional Neural Networks

Johan Vertens, Abhinav Valada, Wolfram Burgard

Goal

- Robust and fast semantic segmentation of driving scenarios
- 2. Semantic motion segmentation

For semantic motion segmentation we consider the "car"-class.

Semantic Motion Segmentation

- Fuse semantic features and generate motion features within a CNN
- Two architectures:
 - 1. FiltFlow-Net: Takes precomputed motion features
 - 2. Siamese-Net: Motion features are learned entirely

FiltFlow-Net

Consecutive Images

Optical Flow (DeepFlow)

Predicted Flow

Motion GT

Depth

Filtered Flow

FiltFlow-Net: Architecture

- Embedded MultiNet
- Predicts moving cars

Siamese-Net: Architecture

Comparison of Architectures

 FiltFlow-Net achieves an improvement of 6.26 IoU over Siamese-Net

Approach	IoU	AP	FPR	FNR
FiltFlow-Net	83.44	94.67	04.39	11.41
Siamese-Net	77.18	89.64	09.10	13.68

Comparison of Inference Time

Siamese-Net has much lower inference time

	FiltFlow- Net	Siamese- Net
Optical Flow (DeepFlow)	11.2s	-
Predicted Optical Flow	$112 \mathrm{ms}$	-
Neural Network	87.4ms	$83.3\mathrm{ms}$
Total	11.4s	83.3 ms

KITTI Motion Segmentation

Cityscapes Motion Segmentation

FiltFlow-Net

Deep Feature Learning for Acoustics-based Terrain Classification

Abhinav Valada, Luciano Spinello, Wolfram Bugard

[ISRR 2015]

Motivation

Optical sensors are highly sensitive to visual changes

Motivation

Use sound from vehicle-terrain interactions to classify terrain

Network Architecture

- Novel architecture designed for unstructured sound data
- Global pooling gathers statistics of learned features across time

Data Collection

Results - Baseline Comparison

(300ms window)

Features	SVM Linear	SVM RBF	k-NN
Ginna [1]	44.87 ± 0.70	37.51 ± 0.74	57.26 ± 0.60
Spectral [2]	84.48 ± 0.36	78.65 ± 0.45	76.02 ± 0.43
Ginna & Shape [3]	85.50 ± 0.34	80.37 ± 0.55	78.17 ± 0.37
MFCC & Chroma [4]	88.95 ± 0.21	88.55 ± 0.20	88.43 ± 0.15
Trimbral [5]	89.07 ± 0.12	86.74 ± 0.25	84.82 ± 0.54
Cepstral [6]	89.93 ± 0.21	78.93 ± 0.62	88.63 ± 0.06

90.99/8/inapinger 500 moservithe previous state of the art

- [1] T. Giannakopoulos, K. Dimitrios, A. Andreas, and T. Sergios, SETN 2006
- [2] M. C. Wellman, N. Srour, and D. B. Hillis, SPIE 1997.
- [3] J. Libby and A. Stentz, ICRA 2012
- [4] D. Ellis, ISMIR 2007
- [5] G. Tzanetakis and P. Cook, IEEE TASLP 2002
- [6] V. Brijesh , and M. Blumenstein, Pattern Recognition Technologies and Applications 2008

Real-World Stress Testing

Can You Guess the Gerrain?

Social Experiment

- Avg. human performance = 24.66%
- Avg. network performance = 99.5%
- Go to deepterrain.cs.unifreiburg.de
- Listen to five sound clips of a robot traversing on different terrains
- Guess what terrain they are

Liquid Height Detection in Cups using RGB-D Data is Hard

Transparent Liquid: Water

Opaque Liquid: Orange juice

Refracted bottom

Reflected liquid height

Approach Overview

Average Fluid Level Error

Opaque vs. Transparent Classification

Pouring

Liquid level detection assumes:

- Liquid is present in the cup
- Can take multiple views of the liquid at the same height

Pouring challenges:

- Starting with empty cup so that no initial liquid to obtain information from
- Only single view of cup so that it is awkward to take multiple views while pouring

Assumption:

Liquid type is known

Liquid level Estimation during Pouring

- **Opaque Liquid**: Use raw measured depth value
- Transparent Liquid: Liquid height can be determined from

$$h_r = \left(1 - \frac{\cos(\alpha)}{\sqrt{n_l^2 - 1 + \cos^2(\alpha)}}\right)h$$

Tracking the Liquid Level using a Kalman Filter

Tracking the Liquid Level using a Kalman Filter

... and End to End Navigation

Deep Reinforcement Learning with Successor Features for Navigation across Similar Environments

Motivation

- Finding a solution for navigation that:
 - Does not require explicit SLAM, localization and path planning procedures
 - Can adapt to new situations (new navigation goals and environments)
- Aim for the agent:
 - Capable of solving all tasks by the end of training
 - Using minimal interaction time for each task

Transfer learning between navigation tasks

Transfer learning scenarios:

- Multiple goal positions: same environment and transition dynamics but different reward function.
- 2. Multiple environments: changes in the maze structure or robot dynamics

Successor Feature RL with Task Transfer (SF-RL-Transfer)

$$\begin{split} \phi_{\mathbf{s}_{t}}^{k} &= \phi^{k}(\mathbf{s}_{t}, \theta_{\phi^{k}}) \tag{1} \\ Q_{k}^{\pi}(\mathbf{s}, \mathbf{a}) &\approx \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \phi_{\mathbf{s}_{t}}^{k} \middle| \mathbf{s}_{0} = \mathbf{s}, \mathbf{a}_{0} = \mathbf{a}, \pi^{k}\right] \cdot \omega^{k} \tag{2} \\ \phi_{\mathbf{s}}^{i} &= \mathcal{B}^{i} \phi_{\mathbf{s}}^{k}, \mathcal{B}^{k} = I, \forall i \leq k \tag{3} \\ Q_{i}^{\pi}(\mathbf{s}, \mathbf{a}) &\approx \mathbb{E}\left[\sum_{t=0}^{\infty} \mathcal{B}^{i} \gamma^{t} \phi_{\mathbf{s}_{t}}^{k} \middle| \mathbf{s}_{0} = \mathbf{s}, \mathbf{a}_{0} = \mathbf{a}, \pi^{i}\right] \cdot \omega^{i} \\ &= \mathcal{B}^{i} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \phi_{\mathbf{s}_{t}}^{k} \middle| \mathbf{s}_{0} = \mathbf{s}, \mathbf{a}_{0} = \mathbf{a}, \pi^{i}\right] \omega^{i} \\ &= \mathcal{B}^{i} \psi^{\pi^{i}} \left(\phi_{\mathbf{s}_{t}}^{k}, \mathbf{a}\right)^{T} \omega^{i} \tag{4} \\ &= \psi^{\pi^{i}} \left(\mathcal{B}^{i} \phi_{\mathbf{s}_{t}}^{k}, \mathbf{a}\right)^{T} \omega^{i}. \tag{5} \end{split}$$

Training Setup

SF-RL-Transfer

Real-world Experiments

Map5

3D Model of a Maze-like World

Overall Conclusions

- Deep networks are a promising approach to solve complex perception problems in robotics
- The key challenges are
 - finding the proper architecture
 - using proper data augmentation strategies
- Goal: Achieving end-to-end learning of complex (navigation) tasks.

What is the Future of Probabilistic Robotics?

Thank you for your attention!