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Some facts about the AIS Lab

= 3 senior researchers
= 32 Ph.D. students

= >350 publications

= 1 technician

= 1 secretary

= 1 project manager

* Head of the DFG Cluster of Excellence
BrainLinks-BrainTools

= Hosted in the Integrated Robotics Center



First Building Added by Robots
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The IRC Mapped by Robots




Freiburg is a Great Place

cooe #

= Great team m - ,n

= Great advisor g

= (Great city

= Great environment

= Great food

= Great wine

= Great 29 days of vacations
= Great 10 national holidays
= Great massage places

In case of any doubt: apply!



Fields of Research

= Mobile robotics
= State estimation and modeling
= Mapping
= Decision-theoretic approaches
= Adaptive techniques and learning (&
= Scene understanding '
= Mobile manipulation

= Multi-robot coordination
= Robots and embedded systems
= Autonomous cars
= Flying vehicles

= Probabilistic robotics



Autonomous Robots

Robots that reliably fulfill their tasks in
real-world environments
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What our Robots Should do ...

= Perception

= object recognition
= human detection

= sensor interpretation

= Navigation

= Manipulation
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Why Deep Learning?

= Multiple layers of abstraction
provide an advantage for solving
complex (pattern recognition)
problems

= Highly successful in computer vision
and pattern recognition

= Can serve wide range of fields and
applications

= End-to-end systems



Deep Learning in Robotics

= Robot perception is a challenging
problem and involves many different
aspects such as
= Scene understanding
= Object detection
= Detection of humans

= Opportunities
= improving perception,
= manipulation
= navigation



Multimodal Deep Learning for
Robust RGB-D Object

Recognition
Andreas Eitel, Jost Tobias Springenberg, &
Martin Riedmiller, Wolfram Burgard 2
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[IROS 2015]



RGB-D Object Recognition
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Often too little Data for Deep
Learning Solutions

Deep networks are hard to train and
require large amounts of data

» Lack of sufficient amount of labeled
training data for RGB-D domain

= How to deal with limited sizes of
available datasets?



Data often too Clean for Deep
Learning Solutions

Large portion of RGB-D data is recorded
under controlled settings

= How to improve recognition in real-
world scenes when the training data is
“clean”?

= How to deal with sensor noise from
RGB-D sensors?



Solution: Transfer Deep RGB
Features to Depth Domain

Both domains share similar features
such as edges, corners, curves, ...



Solution: Transfer Deep RGB
Features to Depth Domain

Depth domain Pre trained RGB CNN RGB domain
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* Similar to [Schwarz et. al 2015, Gupta et. al 2014]
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Multimodal Deep Convolutional
Neural Network

input
conv-1 = Two input
conv.2 fc6 fc7 fcl-fus class mOda“t'eS
conv-3 conv-4 conv-5 ]
= Late fusion network
“‘ = 10 convolutional
layers
= Max pooling layers
= 4 fully connected
layers
depth 4096 4096 4096 51 = Softmax classifier

2xAIexNet + fusion net




How to Encode Depth Images?

= Distribute depth over color channels
= Compute min and max value of depth map
= Shift depth map to min/max range
= Normalize depth values to lie between 0 and 255

= Colorize image using jet colormap (red = near,
blue = far)

= Depth encoding improves recognition
accuracy by 1.8 percentage points

Raw depth Colorized depth

T




Solution: Noise-aware Depth
Feature Learning

Noise
samples

“Clean”
training data

\ 4 :
| Classify
—_— N0|se_ >
adaptation




Training with Noise Samples

5 Noise samples: 50,000

T'\

= Randomly sample noise
for each training batch

.. = Shuffle noise samples

Input p#
image &



RGB Network Training

input

227 conv-1
X
227
3

fc6 fc7

Maximum likelihood
I I learning

conv-2

conv-3 conv-4 conv-5

Fine-tune from
pre-trained
AlexNet weights

p(y | )



Depth Network Training

= Maximum likelihood
learning
384 384 256 -
256

Fine-tune from
depth 4096 4096 pl"e-trained
AlexNet weights
p(y | d)

d ‘
96
3



Fusion Network Training

= Fusion layers automatically learn to combine
feature responses of the two network streams

= During training, weights in first layers stay fixed

input

227 conv-1

conv-2

%6 256

RGB

conv-3

384

. 384 384 256 I I
256

depth

fce fc7 -

conv-4 conv-5 I I
384 256

4096 4096 09

—

fcl-fus class

p(y | L, d)

4096 51




UW RGB-D Object Dataset
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[Lai et. al, 2011]

Category-Level Recognition [%] (51 categories)

_____ Method | __RGB___| _Depth | RGB-D

CNN-RNN 80.8 /8.9 86.8
HMP 82.4 81.2 87.5
CaRFs N/A N/A 88.1

CNN Features 83.1 N/A 89.4



UW RGB-D Object Dataset
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[Lai et. al, 2011]

Category-Level Recognition [%] (51 categories)

_____ Method | __RGB___| _Depth | RGB-D

CNN-RNN 80.8 78.9 86.8
HMP 82.4 81.2 87.5
CaRFs N/A N/A 88.1
CNN Features 83.1 N/A 89.4

This work, Fus-CNN 84.1 83.8 91.3



Confusion Matrix
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Recognition in Noisy RGB-D

soda coffee

Scenes
bowl cap can mug

Recognition - 0
using
annotated
bounding
boxes

Noise adapt. = correct prediction

No adapt. = false prediction

Category-Level Recognition [%] depth modality (6 categories)
Noise soda cereal | coffee
adapt. can box mug

66.5 79.1
69.8

66.6 96.2 79.1
71.8 97.6 79.8 82.1

97.5 68.5
4 96.4 77.5



Deep Learning for RGB-D Object
Recognition

= Novel RGB-D object recognition for robotics

= Two-stream CNN with late fusion
architecture

= Depth image transfer and noise
augmentation training strategy

= State of the art on UW RGB-D Object
dataset for category recognition: 91.3%

= Recognition accuracy of 82.1% on the
RGB-D Scenes dataset



Choosing Smartly: Adaptive
Multimodal Fusion for Object
Detection in Changing
Environments

Oier Mees,
Andreas Eitel, Wolfram Burgard
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Object Detection in Changing
Environments

= How to com-
bine different
modalities for
detection

= Sensor noise
changes with
the environ-
ment




Mixture of Deep Neural
Networks for People Detection

Modalities Classifiers Fusion: Mixture of Deep Experts (MoDE)

CNN » Weighting Class

Experts classifier

OUtpu;‘Z (ﬂ%) »
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wn

oftmax

ow | mp

Combined high-level

features of experts »
r(x)

% gi(r(x))

Gating network

CNN »

General learning approach to fuse different modalities
such as RGB + depth + optical flow



Quantitative Results

= Comparison of fusion approaches

= [ ate fusion approach with additional two-
layer fusion network on top of expert
networks

= Hierarchical mixture of experts
= Qur Mixture of Experts approach (MoDE)

= Adaptive fusion improves performance
-m-mm

Depth HOD [Spinello et al. 2012] 56.3
RGB-D HGE [Spinello et al. 2012] - 87.4
RGB-D-Flow Ours, CifarNet late fusion 88.0/88.4 88.2

RGB-D-Flow Ours, MoDE 88.6/90.0 89.3



Adaptive Weighting in Test Set
Mean gating assignments per frame
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Example Application




Qualitative Results

Gating assignments per bounding box




Quantitative Results

Performance of single and multimodal
networks

___Input | Method | AP/Recall

RGB GooglLeNet-xxs 70.0/79.6

RGB CifarNet 55.3/62.9

Depth GooglLeNet-xxs 71.6/78.9

RGB-D GooglLeNet-xxs 71.1/73.9
average

RGB-D GooglLeNet-xxs late fusion 72.0/76.3

RGB-D GooglLeNet-xxs MoDE 80.4/81.1



Deep Learning for Human Part
Discovery in Images

Gabriel L. Oliveira, Abhinav Valada, Claas
Bollen, Wolfram Burgard, Thomas Brox
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[to be presented at ICRA 2016]



Deep Learning for Human Part
Discovery in Images

= Human-robot interacti
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Deep Learning for Human Part
Discovery in Images

= Dense prediction can provide pixel
classification of the image

= Human part segmentation is naturally
challenging due to
= Non-rigid aspects of the body
= Occlusions

PASCAL Parts S COCO Freiburg Sitting




Network Architecture

= Fully convolutional network

= Contraction and expansion of network
iInput
= Up-convolution operation for expansion

= Pixel input, pixel output

Fully Convolutional Network

PPPPP

64 64| 128 128 256 256 ZSGW 512 512 512[ 512 512 512 4996 4006 N




Experiments

= Evaluation of approach on

= Publicly available computer vision
datasets

= Real-world datasets with ground and
aerial robots

= Comparison against state-of-the-art
semantic segmentation approach:
FCN proposed by Long et al. [1]

[1] John Long, Evan Shelhamer, Trevor Darrell, CVPR 2015



Data Augmentation

Due to the low number of images in the
available datasets, augmentation is
crucial

= Spatial augmentation (rotation + scaling)

= Color augmentation

)
|
.
‘ " |
, -5 ‘ ' -
j !
‘ { )
f ES '
? :
|1
‘ ]
¢ |




PASCAL Parts Dataset
= PASCAL Parts, 4 classes, IOU

Method Head Torso Arms Legs All
FCN 70.74  60.62 4844 50.38 57.35
Ours 75.08 64.81 55.61 56.72 63.03

Ours (Spatial) 80.49 74.39 67.17 70.39 73.00
Ours (Spatial + 83.24 7941 73.73 76.52 78.23
Color)

= PASCAL Parts, 14 classes, 10U

Method Head Torso LU L LW L R R LW R R RILW R LU L LW L Mean
arm  arm hand U arm hand U leg foot leg leg foot
hand leg
FCN 74.0 66.2 56.6 46.0 34.1 589 44.1 31.0 49.3 44.5 40.8 48.5 47.6 41.2  53.1

Ours (Spa- 81.8 78.0 69.5 63.1 59.0 71.2 63.0 58.7 654 60.6 52.0 679 60.3 50.0 66.9
tial)

Ours (Spa- 84.0 81.5 74.1 68.0 64.0 754 674 619 724 67.1 56.9 73.0 66.1 57.7T T1.7
tial+Color)

R = right, L = left, U = upper, LW = lower.



Freiburg Sitting People Part
Segmentation Dataset

We present a novel dataset for human

part segmentation in wheelchairs
f';‘ ol Ty |

_ iy ~a

Input Image Ground Truth Segmentation
mask
Method Accuracy IOU
FCN 59.69 43.17

Ours (Trained on PASCAL) 78.04 59.84

Ours (2 people train - 4 people  81.78 64.10
test)




Robot Experiments

= Range experiments with ground robot

= Aerial platform for disaster scenario
(Segmentation under severe body
occlusions)




Range Experiments

Recorded using Bumblebee camera
= Robust to radial distortion

= Robust to scale
.. ; 3

(b) 2.0 meters

Mean IOU (%)

(d) 4.0 meters

1 i i 1 L
0 1 2 3 4 5 6
Distance (m)

(e) 5.0 meters (f) 6.0 meters



Freiburg People in Disaster

Dataset designed to test severe
occlusions

Input Image Ground Truth Segmentation
mask
Method Head Torso Arms Legs IOU
FCN 52.71 62.49 35.04 43.25 43.20

Ours 80.56 7945 63.93 6491 71.99




Application to Obelix Data




Efficient Deep Models for
Monocular Road Segmentation

REIBURG

- Gabriel Leivas Oliveira

[e]Vision Wolfram Burgard

COMPUTERVISION University of Freiburg

Intelligent
Systems

AfS Autonomous Thomas Brox

University of Freiburg, Germany
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Motivation
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Architecture

More parameters expansion
1-to-C*Ncl filters per refinement

Efficient Deep Models for Monocular Road Segmentation — G. L. OLiveira, W. Burgard, T. Brox



Terrain Classification using a
Late Fusion DCNN Architecture

Snow

Low
Lighting




Autonomous Navigation in
Outdoor Areas




Terrain Classification using a
Late Fusion DCNN Architecture

Modality 1 (RGB) Modality 2 (Depth)




Semantic Segmentation of
Moving Objects using
Convolutional Neural Networks

Johan Vertens, Abhinav Valada,
Wolfram Burgard
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Goal

1. Robust and fast
semantic
segmentation of
driving scenarios

2. Semantic motion
segmentation

Driving car - Standing car

For semantic motion segmentation we
consider the “car”-class.



Semantic Motion Segmentation

= Fuse semantic features and generate
motion features within a CNN

= TwWoO architectures:

1. FiltFlow-Net: Takes precomputed motion
features

2. Siamese-Net: Motion features are
learned entirely




FiltFlow-Net

Consecutive Images Motion GT
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Optical Flow (epFIow) Depth
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FiltFlow-Net: Architecture

= Embedded MultiNet
= Predicts moving cars

64 64 64 128 128
1 1
Filtered Flow %7
Il H 256 256 512 512
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512x
- > | 24x48
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Network
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Network rll\
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Siamese-Net: Architecture

Previous Image yd

128

128 128

1 1 )
, 1 1
Feature Extraction * ﬂ 1 ! ! ! ﬂz
512 512 512 512 1024 L'1024
/ QD | ' -/ ' -/ ' -/ -/ -/
Current Image 512x24x48 1024x24x48
Feature Extraction *
Car Segmentation
Network
(Expansive Part)
Car Segmentation P
. Network \l
(Contractive Part)
256 256 256 512 512
1 2 1
, 1 1 : 2
1024 1024 1024 2048 2048 I'" I'“ 3x
1024x24x48 2048x24x48




Comparison of Architectures

= FiltFlow-Net achieves an improvement of
6.26 IoU over Siamese-Net

Approach IoU AP FPR FNR

FiltFlow-Net 83.44 94.67 04.39 11.41
Siamese-Net 7718 89.64 09.10 13.68




Comparison of Inference Time

= Siamese-Net has much lower inference

time
FiltFlow- Siamese-
Net Net
Optical Flow (DeepFlow) 11.2s
Predicted Optical Flow 112ms
Neural Network 87.4ms 83.3ms
Total 11.4s 83.3ms




KITTI Motion Segmentation

FiltFlow-Net
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Cityscapes Motion Segmentation

FiltFlow-Net

Driving Car Standing Car Car behind max-range




Deep Feature Learning for
Acoustics-based Terrain
Classification

Abhinav Valada, Luciano Spinello,
Wolfram Bugard

UNI
FREIBURG

[ISRR 2015]



Motivation
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Variations

Optical sensors are highly sensitive to
visual changes



Motivation

Use sound from vehicle-terrain
interactions to classify terrain



Network Architecture

= Novel architecture designed for
unstructured sound data

= Global pooling gathers statistics of
learned features across time
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Data Collection

Linoleum

e 2

'Paving

Offroad



Results - Baseline Comparison

(300ms window)

Features SVM Linear SVM RBF k-NN

Ginna [1] 44.87 £+ 0.70 37.51 £0.74 57.26 £+ 0.60
Spectral [2] 84.48 £+ 0.36 78.65 £+ 0.45 76.02 £+ 0.43
Ginna & Shape [3] 85.50 £ 0.34 80.37 £ 0.55 78.17 £+ 0.37
MFCC & Chroma [4] 88.95 £+ 0.21 88.55 + 0.20 88.43 £ 0.15
Trimbral [5] 89.07 £ 0.12 86.74 + 0.25 84.82 + 0.54
Cepstral [6] 89.93 + 0.21 78.93 £+ 0.62 88.63 + 0.06

26.9Y%6npngaridnoyavitldowrevious state of the art

[1] T. Giannakopoulos, K. Dimitrios, A. Andreas, and T. Sergios, SETN 2006

[2] M. C. Wellman, N. Srour, and D. B. Hillis, SPIE 1997.

[3] J. Libby and A. Stentz, ICRA 2012

[4] D. Ellis, ISMIR 2007

[5] G. Tzanetakis and P. Cook, IEEE TASLP 2002

[6] V. Brijesh , and M. Blumenstein, Pattern Recognition Technologies and Applications 2008



Real-World Stress Testing
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Avg. accuracy of 98.54%




Can You Guess the Gerrain?

Social Experiment
= Avg. human performance = 24.66%
= Avg. network performance = 99.5%

= Go to deepterrain.cs.uni-
freiburg.de

= Listen to five sound clips of a robot
traversing on different terrains

= Guess what terrain they are



Liquid Height Detection in Cups
using RGB-D Data is Hard

Transparent Liquid: Water Opaque Liquid: Orange juice

Refracted bottom Reflected liquid
height



Approach Overview
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Average Fluid Level Error
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Opaque vs. Transparent Classification
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Pouring

Liquid level detection assumes:
= Liquid is present in the cup

= Can take multiple views of the liquid at the same
height

Pouring challenges:

= Starting with empty cup so that no initial liquid to
obtain information from

= Only single view of cup so that it is awkward to
take multiple views while pouring

Assumption:
= Liquid type is known



Liquid level Estimation
during Pouring

= Opaque Liquid: Use raw measured depth value

= Transparent Liquid: Liquid height can be
determined from

cos()
hfr- — 1 - h
( \/nl21+6082(a)>




Tracking the Liquid Level
using a Kalman Filter

0.08

Depth measurement - blue Opaque Liquid -
Kalman filtered height - red Infrared light is reflected
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Tracking the Liquid Level
using a Kalman Filter

0.08

Depth measurement - blue Transparent Liquid -
Transformed, filtered height - red Infrared light is refracted
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... and End to End Navigation




Deep Reinforcement Learning
with Successor Features for
Navigation across Similar
Environments




Motivation

= Finding a solution for navigation that:

= Does not require explicit SLAM,
localization and path planning procedures

= Can adapt to new situations (new
navigation goals and environments)

= Aim for the agent:

= Capable of solving all tasks by the end of
training

= Using minimal interaction time for each
task



Transfer learning between
navigation tasks

Transfer learning scenarios:

1. Multiple goal positions: same
environment and transition dynamics but
different reward function.

2. Multiple environments: changes in the
maze structure or robot dynamics



Successor Feature RL with Task
Transfer (SF-RL-Transfer)

oy = ¢k(st79¢k) (1)
Q% (s,a) ~ Zy qﬁk Sg = S, ao—aﬂk] - wh (2)
PL = B"kB"“—IVz<k (3)

Q7 (s,a) ~
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Training Setup

Synthetic Real
Depth Depth
Images Images



SF-RL-Transfer

Average Reward

A* Planner
Supervised
SF-RL

SF-RL-Transfer |

2 3
Training Steps

4

5
1e5



Real-world Experiments

Map5

3D Model of a Maze-like World




Overall Conclusions

= Deep networks are a promising
approach to solve complex perception
problems in robotics

= The key challenges are

= finding the proper architecture

= Using proper data augmentation
strategies

= Goal: Achieving end-to-end learning of
complex (navigation) tasks.



What is the Future
of Probabilistic Robotics?

Score Maps

-
z

fc6-conv fc7-conv

conv-1.1 conv-1,2 conv-2.1 conv-2,.2  conv-3.1 conv-3.2  conv-3.3 conv-4,1 conv-4.2  conv-4.3 conv-5.1 conv-5.2  conv-5.3 up-convl up-conv2 up-conv3 up-conv4 up-convs

Pool 4

128 128 512 512 512

b 3

SEBASTIAN THRUN

WOLFRAM BURGARD
DIETER FOX




Thank you for your attention!



