7/29/18

Rule Control of Teleo-Reactive, Multi-tasking,
Communicating Robotic Agents

Robotic agent programming in QuLog and TeleoR

Keith Clark
Imperial College
University of Queensland
University of New South Wales

Joint work with
Peter Robinson
University of Queensland 1

Baxter two arm concurrent tower

building

QuLog - a modern logic
programming language
Flexibly typed, multi-threaded, higher order

Relation and function defining rules - The declarative subset
» Relation rules more declarative than Prolog
» Relations must have their modes of use declared
— which arguments must be given, which may be returned
» Used to encode the agent’s knowledge

Dynamic relations - defined only by facts
« Like tuples of a relational DB
» Used for the agent’s dynamic beliefs — its Belief Store (BS)

Top layer of action rules — the imperative subset
« Threads execute actions

« Primitive actions — thread forking, I/O, inter-agent comms, BS updating
3

TeleoR

Application specific extension of QulLog to facilitate programming of
robust, goal directed, concurrently executing robotic device control threads

Major development of Nilsson’s T-R robotic language of
guard ~> action
rules sequenced into parameterised procedures

T-R has its roots in the triangular table representation of the
generalised plans of first Al robot — SRI’s Shakey of late 1960s

TeleoR’s rule guards are QuLog queries to the agent’'s BS, optionally using its
knowledge

Compile time guarantee of fully determined and type correct robot actions

High level multi-tasking using task atomic procedures

Formal state transition semantics

7/29/18

7/29/18

Minimal Multi-threaded Agent Architecture

@xed Knowledge - Relation andw

Function definitions

Declarative
QuLog Belief Store - updateable facts

Atomic

Updates/t

Imperative
QuLog

TeleoR +
imperative
QuLog

consideyation
of fired rules

Message
Handler
ag@host

Percepts

Handler Mid-level

action control
messages

Frequent mid-level
interpretations of all
the raw sensor data.

Pub/Sub and Addressed
Message Router

symbolic

osquioto
messgges

Extra threads for extra capabilities

Fixed Knowledge Rules
Updateable Beliefs
Common Ontology for all threads

Percepts || Message Temporary SLAM _
Handler || Handler Query Thread beliefs.
Thread resolving

ag@host

inconsistency

7/29/18

One arm block tower building

t1:[2, 5,9, 6] 7

Task Knowledge

def block::=1..9

durative pickup(block), put_on_block(block), put_on_table()
percept on(: (), ()

rel sub_tower(list(block)), tower(list(block)), clear(block)
fun top(list(block)) -> block, tail(list(block)) -> list(block)

sub_tower([B]) <= on_table(B)
sub_tower([B1,B2,..Blocks]) <=

B1,B2) & sub_tower([B2,..Blocks])
tower([B,..Bs]) <= clear(B) & sub_tower([B,..Blocks])
clear(B) <= not exists OtherB on(OtherB,B

top(B,..)->B
tail([_,.. Bs] > Bs 8

Control Knowledge
Universal conditional top-level plan for block
tower building

tel makeTower(list(block))
makeTower(Blocks){ Action normally,
eventually achieves
tower(Blocks) ~> () % Goal holds, dofothing

sub_tower(Blecks) ~> make_clear(top(Blocks))

tower(tail(Blocks)) ~>
move_to_block(head(Blocks), head(tail(Blocks)))

Blocks=[B] ~> move_to_table(B)

true ~> makeTower(tail(Blocks))

}

Mutually recursive control
procedures

tel make_clear(block)
make_clear(Block){

clear(Block) ~> () % Goal is achieved
on(OnBlock,Block) ~> move_to_table(OnBlock)

tel move_to_table(block)
move_to_table(OnBlock){

on_table(OnBlock) ~> () % Goal is achieved
holding(OnBlock) ~> put_on_table()

clear(OnBlock) & not holding(_) ~> pickup(OnBlock)
not holding(_) ~> make_clear(OnBlock)

holding(_) ~> put_on_table()

7/29/18

Concurrent Task Tower Building

Arm speed: 25
Press the spacebar to continue

2 14
5
3 4 I

t2:[12,15,8,1] 13:[14,13,7,16] t1:[2,5,9, 6]

Update of single task tower builder

Just need to add:
task_start makeTower

task_atomic move_to table, move to block

7/29/18

Multi-tasking architecture

Task4
Waiting for
R1,R5

Dynamic
Facts

Message
Handler

Evaluation
Threads

Percepts

Handler Outgoing

l Coptrol messages
actions
Percepts for

Outgoing different

messages robotic
resources

Co-operative navigation

Blue robot path [(blue,1,0), (green,5,1), (,4,5), (red,8,4)]
0 1 2 3
\
\
4 5 6 7
©
8 9 10 1"
e |
[,
12 13 14 15
I o I 14

7/29/18

Common beliefs of agents

» The topological map of rooms and doors.
e.g. connected(blue,1,2,90), connected(blue,2,1,270)

* Which chargers are ‘reserved’

* Which doors are closed
- this may be inaccurate

* Location of each robot

« Each robot’s current path, if any

The task knowledge

def room ::= 0..15

def door_status ::= open | shut

def battery_status :: high | low

def door ::= blue | green | yellow | red

def path == list((door,room,room)) % type macro

def message ::= new_loc(robot,room) | path(robot,path) |

staying(robot) | backed_up(robot,room,door) | ..

durative turn(turn_dir), forward(), reverse()
percept

dyn loc(robot, room), open(door,room), reserved(robot, room),
following(robot, room, path)

rel connected(?door,?room,?room), charger_room(?room),
home_room(?robot,?room), ...

7/29/18

Recursive path follow procedure

tel follow(robot, room, path)
follow(Me, DestRm, Path) {
loc(Me, DestRm) ~> ()

loc(Me, Rm) & Path=[(Door, Rm, DestRm),..] &
connected(Door, Rm, DestRm, DoorDir) ~>
move_to next room(Me, Rm, DestRm, DoorDir)

Path=[(_, Rm. DestRm),..PriorPath] ~>
follow(Me, Rm, PriorPath)
% recursive call to get robot info Rm

}

Top level navigation

tel get_to_room(robot, rel(?room)) % Higher order, 2" arg a monadic rel.
get_to_room(Me,DestTest)

loc(Me, MyRm) & DestTest(MyRm) ~> ()

following(Me,DestRm,Path) &
rem_path_open_and_shortest_to_dest(Me,Path,DestTest) ~>
follow(Me, DesiRm, Path)

loc(Me, MyRm) &
graph_path(MyRm, DestRm, Path, open_connected, DestTest)) ~>
() ++ new_path(Me, DestRm, Path) to pedro

true ~> stay_avoiding_other_robots(Me) ++ staying(Me) to pedro

}

rel open_connected(door,room,room)
open_connected(Door,Rm1,Rm2) <=
connected(Door,Rm1,Rm2,_) & open(Rm1,Door)

7/29/18

Minimal Multi-threaded Agent Architecture
Fixed Knowledge - Relation and
(Function deﬁnitionsw
Belief Store - updateable facts

Atomic

Updates*

Message
Handler
ag@host

Percepts
Handler

Mid-level
action control
messages

Percept facts

Outgoing new_path

Incoming new_pat
messages - serialised

Delivery robots in Japan

https://youtu.be/ QndP_PCRSw

©) I8 wc

20

7/29/18

10

TeleoR semantics and
implementation

* Formal State Transition Semantics
» Optimized Reference Implementation

* Runtime system that implements state transition semantics
» Compile time analysis ensures rule guards are not re-evaluated on
BS update if no relevant change made

* Currently compiled to multi-threaded Qu-Prolog

» Will be compiled to specialized Abstract Machine Code
similar to but simpler than Warren’s Prolog Abstract
Machine Code

21

Sources and software

Clark & Robinson, Robotic Agent Programming in TeleoR, ICRA 2015,
IEEE

Clark & Robinson, Concurrent Task Programming of Robotic Agents in
TeleoR, Invited Paper and Demo, Rule-ML 2017 Challenge, on
http://ceur-ws.org/Vol-1875/

Clark et al, A Framework for Integrating Symbolic and Sub-symbolic
Representations, IJCAI 2016, AAAI Press

Programming Communicating Multi-tasking Robotic Agents:
A Teleo-Reactive Rule Based Approach, Springer, 2019
first 5 chapters at teleoreactiveprograms.net

TeleoR and QuLog Software for Unix, Linux and OS X at
http://staff.itee.uq.edu.au/pjr/HomePages/QulogHome.html

Collaboration and users welcomed 22

7/29/18

11

