
7/29/18

1

Rule Control of Teleo-Reactive, Multi-tasking,
Communicating Robotic Agents

Robotic agent programming in QuLog and TeleoR

Keith Clark
Imperial College

University of Queensland
University of New South Wales

Joint work with
Peter Robinson

University of Queensland 1

Baxter two arm concurrent tower
building

2

7/29/18

2

QuLog - a modern logic
programming language

•  Flexibly typed, multi-threaded, higher order

•  Relation and function defining rules - The declarative subset
•  Relation rules more declarative than Prolog
•  Relations must have their modes of use declared

–  which arguments must be given, which may be returned
•  Used to encode the agent’s knowledge

•  Dynamic relations - defined only by facts
•  Like tuples of a relational DB
•  Used for the agent’s dynamic beliefs – its Belief Store (BS)

•  Top layer of action rules – the imperative subset
•  Threads execute actions
•  Primitive actions – thread forking, I/O, inter-agent comms, BS updating

3

TeleoR
•  Application specific extension of QuLog to facilitate programming of

robust, goal directed, concurrently executing robotic device control threads

•  Major development of Nilsson’s T-R robotic language of
 guard ~> action

 rules sequenced into parameterised procedures

•  T-R has its roots in the triangular table representation of the
generalised plans of first AI robot – SRI’s Shakey of late 1960s

•  TeleoR’s rule guards are QuLog queries to the agent’s BS, optionally using its
knowledge

•  Compile time guarantee of fully determined and type correct robot actions

•  High level multi-tasking using task atomic procedures

•  Formal state transition semantics 4

7/29/18

3

Belief Store - updateable facts

?
Percepts
Handler

Message
Handler
ag@host

Frequent mid-level
interpretations of all
the raw sensor data.

Mid-level
action control
messages

Task
Thread

?

Frequent re-
consideration
of fired rules

 Atomic
Updates

Minimal Multi-threaded Agent Architecture

5
pedro

Pub/Sub and Addressed
Message Router

TeleoR +
imperative
QuLog

Declarative
QuLog

Fixed Knowledge - Relation and
 Function definitions

Imperative
QuLog

 Atomic
Updates

Mosquioto MQTT
messages

symbolic
messages

Extra threads for extra capabilities

6

Fixed Knowledge Rules
Updateable Beliefs

Common Ontology for all threads

?
Percepts
Handler

Message
Handler
ag@host

? ?
Task

Thread
SLAM
Thread

CHR Thread
Abducing new

beliefs.
resolving

inconsistency

?

?

Temporary
Query
Thread

? ? ?

7/29/18

4

One arm block tower building

7

Task Knowledge

8

def block::= 1..9

durative pickup(block), put_on_block(block), put_on_table()
percept on(block,block), on_table(block), holding(block)

rel sub_tower(list(block)), tower(list(block)), clear(block)
fun top(list(block)) -> block, tail(list(block)) -> list(block)

sub_tower([B]) <= on_table(B)
sub_tower([B1,B2,..Blocks]) <=
 on(B1,B2) & sub_tower([B2,..Blocks])

tower([B,..Bs]) <= clear(B) & sub_tower([B,..Blocks])

clear(B) <= not exists OtherB on(OtherB,B)

top([B ,.. _) -> B
tail([_ ,.. Bs] -> Bs

7/29/18

5

Control Knowledge
Universal conditional top-level plan for block

tower building

9

tel makeTower(list(block))

makeTower(Blocks){

 tower(Blocks) ~> () % Goal holds, do nothing

 sub_tower(Blocks) ~> make_clear(top(Blocks))

 tower(tail(Blocks)) ~>
 move_to_block(head(Blocks), head(tail(Blocks)))

 Blocks=[B] ~> move_to_table(B)

 true ~> makeTower(tail(Blocks))
 }

Action normally,
eventually achieves

Mutually recursive control
procedures

10

tel make_clear(block)
make_clear(Block){

 clear(Block) ~> () % Goal is achieved

 on(OnBlock,Block) ~> move_to_table(OnBlock)
 }
tel move_to_table(block)
move_to_table(OnBlock){

 on_table(OnBlock) ~> () % Goal is achieved

 holding(OnBlock) ~> put_on_table()

 clear(OnBlock) & not holding(_) ~> pickup(OnBlock)

 not holding(_) ~> make_clear(OnBlock)

 holding(_) ~> put_on_table()
 }

7/29/18

6

11

Concurrent Task Tower Building

Update of single task tower builder

12

Just need to add:

task_start makeTower

task_atomic move_to_table, move_to_block

7/29/18

7

Percepts

Control
actions
for
different
robotic
resources

Dynamic
Facts

Percepts
Handler

TR
Evaluation
Threads

Messages

Message
Handler Task1

Using
R1,R2

Task2
Using

R3

Outgoing
messages

Multi-tasking architecture

Task3
Waiting for

R1,R3

Task4
Waiting for

R1,R5
Fixed
Facts &
Rules

?
?

?

Outgoing
messages

Co-operative navigation

14

 Blue robot path [(blue,1,0), (green,5,1), (yellow,4,5), (red,8,4)]

0 1 2 3

4 5 6 7

8 9

12

10 11

13 14 15

7/29/18

8

Common beliefs of agents

15

•  The topological map of rooms and doors.
 e.g. connected(blue,1,2,90), connected(blue,2,1,270)

•  Which chargers are ‘reserved’

•  Which doors are closed
- this may be inaccurate

•  Location of each robot

•  Each robot’s current path, if any

The task knowledge

16

def room ::= 0..15
def door_status ::= open | shut
def battery_status :: high | low
def door ::= blue | green | yellow | red
def path == list((door,room,room)) % type macro
def message ::= new_loc(robot,room) | path(robot,path) |
 staying(robot) | backed_up(robot,room,door) | ..
% message is a reserved type name

durative turn(turn_dir), forward(), reverse()
percept battery(battery_status), see_door(door, door_status),
 see_centre_ahead(), see_centre_close(), at_room_centre(),
 in_doorway(door), facing(door)

dyn loc(robot, room), open(door,room), reserved(robot, room),
 following(robot, room, path)

rel connected(?door,?room,?room), charger_room(?room),
 home_room(?robot,?room), ...

7/29/18

9

Recursive path follow procedure

17

tel follow(robot, room, path)

follow(Me, DestRm, Path) {

 loc(Me, DestRm) ~> ()

 loc(Me, Rm) & Path=[(Door, Rm, DestRm),..] &
 connected(Door, Rm, DestRm, DoorDir) ~>
 move_to_next_room(Me, Rm, DestRm, DoorDir)

 Path=[(_, Rm, DestRm),..PriorPath] ~>
 follow(Me, Rm, PriorPath)

 % recursive call to get robot into Rm
 }

Top level navigation

18

tel get_to_room(robot, rel(?room)) % Higher order, 2nd arg a monadic rel.
get_to_room(Me,DestTest){

 loc(Me, MyRm) & DestTest(MyRm) ~> ()

 following(Me,DestRm,Path) &
 rem_path_open_and_shortest_to_dest(Me,Path,DestTest) ~>
 follow(Me, DestRm, Path)

 loc(Me, MyRm) &
 graph_path(MyRm, DestRm, Path, open_connected, DestTest)) ~>
 () ++ new_path(Me, DestRm, Path) to pedro

 true ~> stay_avoiding_other_robots(Me) ++ staying(Me) to pedro
 }

rel open_connected(door,room,room)
open_connected(Door,Rm1,Rm2) <=
 connected(Door,Rm1,Rm2,_) & open(Rm1,Door)

7/29/18

10

Belief Store - updateable facts

?
Percepts
Handler

Message
Handler
ag@host

Percept facts Mid-level
action control
messages

Incoming new_path
messages - serialised

Task
Thread

?

Frequent re-
consideration
of fired rules

 Atomic
Updates

Minimal Multi-threaded Agent Architecture

19
pedro

Fixed Knowledge - Relation and
 Function definitions

 Atomic
Updates

Outgoing new_path
message.

Delivery robots in Japan

20

https://youtu.be/_QndP_PCRSw

7/29/18

11

TeleoR semantics and
implementation

21

•  Formal State Transition Semantics
•  Optimized Reference Implementation

•  Runtime system that implements state transition semantics
•  Compile time analysis ensures rule guards are not re-evaluated on
 BS update if no relevant change made

•  Currently compiled to multi-threaded Qu-Prolog
•  Will be compiled to specialized Abstract Machine Code
 similar to but simpler than Warren’s Prolog Abstract
 Machine Code

Sources and software

22

Clark & Robinson, Robotic Agent Programming in TeleoR, ICRA 2015,
IEEE

Clark & Robinson, Concurrent Task Programming of Robotic Agents in
TeleoR, Invited Paper and Demo, Rule-ML 2017 Challenge, on
http://ceur-ws.org/Vol-1875/

Clark et al, A Framework for Integrating Symbolic and Sub-symbolic
Representations, IJCAI 2016, AAAI Press

Programming Communicating Multi-tasking Robotic Agents:
A Teleo-Reactive Rule Based Approach, Springer, 2019
first 5 chapters at teleoreactiveprograms.net

TeleoR and QuLog Software for Unix, Linux and OS X at
 http://staff.itee.uq.edu.au/pjr/HomePages/QulogHome.html

Collaboration and users welcomed

