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[. INTRODUCTION

A neural network consists of L layers.




Layer & consists of N;, neurons, k= 1.2, ... L.
¥ - the firing rates of the neurons in Layer £.
Y - the inputs to the neural network.
rE - the output from the neural network

L 1s the last or output layer.

ke

ke — 1 and the j-th neuron in Layer k.

wy. - the weight between the 7-th neuron 1n Layer



The outputs of of neurons 1n Layer k& can be

calculated as
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where p;%‘ are the membrane potentials of the neurons

and o(x) = 1/(1 4 ¢=*) 1s the siemoidal function.
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The goal 1s to learn/adapt the weights ufj so that

the least square error 18 minimized.
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where 7% is the desired/target output of the n-th

neuron in the last (output) layer.



The adaptation 1s achieved by letting
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where « 18 the adaptation parameter that can be

adjusted during the adaptation.



The conventional back-propagation algorithm (C-B-

algorithm) can be derived as
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Note that a feedback network 1s needed to back-
propagate the error signal from ¢**1 to f} . The

weights of the feedback network must be kept the

same as the feed-forward network, because u,fj

appears in both Equation (1) and Equation (4).






[I. ALGORITHM AND IMPLEMENTATION
WITHOUT FEEDBACK NETWORK

An equvalent learning algorithm (B-L-algorithm),

first published 1n 1996 by Brandt and Lin.
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In a neuron, the weights w of dendritic

synapses are adapted based in the information
on the weights w};,"* of its axonic synapses
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— forward information flow
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Supervised Learning in Neural Networks:
Feedback-Network-Free Implementation
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Abstract— The well-known backpropagation learning algo-
rithm is probably the most popular learning algorithm in
artificial neural networks. It has been widely used in various
applications of deep learning. The backpropagation algorithm
requires a separate feedback network to back propagate errors.
This feedback network must have the same topology and
connection strengths (weights) as the feed-forward network.
In this article, we propose a new learning algorithm that is
mathematically equivalent to the backpropagation algorithm but
does not require a feedback network. The elimination of the
feedback network makes the implementation of the new algo-
rithm much simpler. The elimination of the feedback network also
significantly increases biological plausibility for biological neural
networks to learn uvsing the new algorithm by means of some
refrograde regulatory mechanisms that may exist in neurons.
This new algorithm also eliminates the need for two-phase
adaptation (feed-forward phase and feedback phase). Hence,
neurons can adapt asynchronously and concurrently in a way
analogous to that of biological neurons.

well-known and widely used [17]-[19]. It allows errors
to be backpropagated via a feedback network so that the
strengths/weights of each synapse/connection can be learned/
adapted to reduce the errors.

Researchers have investigated whether an analogous adapta-
tion mechanism might occur in biological neural systems [20]
since the mtroduction of the backpropagation algorithm. The
CONsensus among neuroscientists is that the backpropagation is
not likely to occur in biological neural systems [21]. The main
reason for this consensus is that the backpropagation algorithm
requires a dedicated feedback network to backpropagate errors
(see, for example, [17]). Such a separate feedback network
does not exist as a biological neural system. It is unreasonable
to require that a biological neural system has a one-to-one
correspondence between synapses in the feed-forward network
and feedback network. It i1s even more unreasonable to require



Simulink implementation: The neural network with
fixed layers are used to generate the desired/target
outputs. The neural network with adaptive layers

uses the B-L-algorithm.

0 —e—P= 0 I e — =7 3 4%3 T }—b E]
'y | )
| BOLUBNG E

Fixed Layar 1 Fixed Layesr 2 Fixed Layer 3

: o e — rd

ot wwtd —e—] P arat D e

Acdapbive Layer 1 Adaplive Layer 2



We run several simulations to test the effective-
ness of the B-L-algorithm. A typical simulation 1s

as follows. Let
L =3,
Ny = Ny = Ny = 3.

k

We select w? with & 1.2.3 and 7.7 = 1.2.3

randomly as

Wi, Wiy Wi —1.9365 3.1763 —1.2139
ol W, @i, | = 0.0851 2.9483  3.1158
Wi, Wiy Wi 0.1077 1.4432  0.3283




—1.4927
4.3900
3.7594
1.2206

—1.4905
0.1325

0.5016
1.2248
0.8704

—4.2403
—2.6008

—2.9226
—1.9875
—0.2908

_0.0819 —3.7668
31609
—9.6005




The 1nitial weights (before learning) for w
1.2.3 and 7.7

randomly as
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0.7521
—1.4684
—4.5608
—0.4115
0.2114
1.2406

—4.4022
3.2119
—3.3101
1.6309
—2.6841
1.7914

—2.6522
—4.8460
1.4912
0.4681
—0.1110
—1.0448




Simulation shows that the error reduces to 0.




Simulation shows the convergence of weights.




0k
-Qf—-
4}

0 20

80



80



Select a different :?f‘j the results are similar.

W1, Wiy Wi —3.8880 —2.5831 —3.6803
0y, Wyy 1ye | = 2.8025 —0.9609  4.4205
Wy Wiy wyy || —1.10260 —4.0355  4.5613
@2, @2, @ | | —0.8273 44479 —1.6228
w3, w3, w3, | = | —4.5035 —0.0914  4.0005
wy Wy, wyy || 4.0272 —0.1075  —1.3075
oo, wh || 1.2206 —0.9819 —3.7668
Wy, Wi, Wh | = | —1.4905 —4.2403 —3.1609
w3y Wi wyy || 01325 —2.6008  —2.6005




The B-L-algorithm has the following properties.

1) Two algorithms are mathematically equiva-
lent. In other words, the B-L-algorithm can
be used wherever the C-B-algorithm can be
used. In any applications, the performance of
the B-L-algorithm will be as good/bad as the

C-B-algorithm.



2) The 1mplementation of the B-L-algorithm
does not require a feedback network whose
topology and weights must be kept the same

as the feed-forward network.



3) Because of the removal of this requirement,
adaptation according to the B-L-algorithm 1s
much more plausible in biological neural sys-
tems. This 1s because it 1s unlikely that the
requirement of feedback network can be met

in biological neural systems.



4) Comparing Equation (3) with Equation (5).
we observe that the relevant error feedback
is implicit in the weights (w? ») and their
rates of change (u ) More precisely, the
appropriate error feedback for any neuron 1is
proportional to the derivative of the sum of
the squares of the strengths of the axonic

connections, because ( Zm"*l (-uf“l )2)!

n=1 n
N
2Nk gk

n=1 qn jn



5) Since the B-L-algorithm does not require a
separate feedback network, 1t eliminates the
needs for having a feed-forward phase and a
feedback phase. Adaptation can be performed
in a phaseless fashion by processing informa-

tion asynchronously and concurrently.



0) The adaptation parameter o appears only at
the last layer. That means « can be easily

adjusted during the adaptation.



7) All layers of the neural network have the
same structure, except the last layer, which
1s shightly different. Hence, only two types of
implementation blocks need to be built: one
for the last layer and one for the other layers.
These blocks can then be easily connected
in Stmulink and other implementation plan-

forms.



8) If there 1s a need to implement neurons on
silicon, the B-L-algorithm provides a much
simpler 1mplementation. The elimination of
feedback network significantly reduces wiring
layout complexity among neurons, as there
1s no need to implement a separate feedback
network and then connect neurons in the feed-
back network with the corresponding neurons

in the feed-forward network.



9) Using the B-L-algorithm, an adaptive neuron
can be designed as an identical and standard
unit without considering network topology
or adaptation parameter «. These adaptive
neurons can then be interconnected arbitrar-
1lly. Hence, the B-L-algorithm can be used
to design neural networks with dynamically

reconfigurable topologies.



10) Since all feedback and connections are local,
implementations using the B-L-algorithm are
more fault-tolerant in the sense that failures of
some neurons will not cause the entire neural

network to become nonfunctional.
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An GSFEFG 1s similar to a CSEG., but some nodes 1n
GSFG are super nodes.

Assume that there are /N nodes. Denote a node by
neN={12 .. N}

Denote the branch and its gain from node 7 to node

7 by w;;. The set of branches/gains 1s defined as

= {w; 1,7 € N Niis connected to j}.



The set € 18 partitioned into two sets:

Q=0,UQ

et

where €2, 1s the set of adaptable branches/gains and
(), 18 the set of non-adaptable branches/gains. Non-

adaptable branches have constant gains c;;.



Some nodes in A are super nodes. A super node

consists of a pair of input and output, denoted by

(s Up ).

The relationship between w,, and v, 1s described by

a functional
G,: R —=R.



For a linear system, G,, 1s given by transfer function
G, (s).
}’;1 [H) — Gﬂ_( H]{Tn( H) .

For a nonlinear system,

YUn (ﬂ — gn |:”'ﬂ-(f-'):| .

We assume that the Fréchet derivative of G,, exists.

[f a node n € A is not a super node, then y,, = u,,.



The nput signal of node » i1s the sum of all signals

flowing to n:
N

Uy = Wimn Ym- (ﬁ')
1

=

The output signal of node n 1s then given by

Yn — gn [”-n] . (7)



[V. ON-LINE LEARNING OF GSFG

Our goal 1s to use on-line learning to learn/adapt
the gains w;; € {2, so that the least square error 1s
minimized.

|
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where y,, 1s the desired output of node m € O.

Use gradient decent for w;; € (2,

X dE




Learning algorithm for GSFG
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Two special cases.
Case 1: Node j is an output node. In this case,

Equation (8) reduces to

Wij = —r'l-:jui:_g;[H.j](j;j — ;). 9)



Case 2: Node 7 1s not an output node. In this case,
Equation (8) reduces to

"-';"?
Wij = “j E Wim L-‘-‘;;r*.rir?, + E *-‘-’jm "'{"’jﬂl]'

Wi Eﬂ Wim Eﬂn-:r,

(10)

Note that the adaptation parameter o does not

appear in the above equation.



V. ADAPTIVE PID CONTROL

A feedback control system with a PID controller.

—;Q—»‘ PID |+ Plant




Conventional signal-flow graph (CSFG)




Generalized signal-flow graph (CSFGQG)
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The PID control system consists of 8 nodes, includ-

Ing 4 super
SN 1 1st
SN 2 1st
SN 3 ist
SN 4 1s t

nodes (SN).
1e integral part G(s) = 1/s.
1e proportional part, Ga(s) = 1.

1e derivative part, G3(s) = s.

1e plant, given by either Gy4(s) (linear)

or G, (nonlinear).



The PID gains are represented by branch gains as

follows.

ntegral: K = wyy

Proportional:  Kp = wyy

Derivative: Kp = wsy

All other branch gains are 1, except wyg = —1.



The model reference adaptive PID control

Reference Model H{s)

1
SN 1 E‘? ror
Input v 1 - Vi — Va
/—‘ ~1
1 SN2 Kp .




The objective 1s to adapt the gains K7, Kp, Kp so
that the output of the controlled system follows the
output of the reference model.

The reference model: transter function H(s) or

2]

impulse response h(t):

ys(t) = hit) = v(t).

Hence.



SN 4 1s an output node:

‘ OF
Wi4a — — hg [354] — fi?g4[f34]( s — Y4).
r) 14
- _ / , ~
K1 = =11 Gy|ua](ys — ya)
Kp = —vy2Gy[ua)(ys — a) (11)

Kp = —"}'Hagi [’“-4: (2!14 — Ua).



VI. SIMULATION RESULTS
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Reference model
s2 1 1200s 4 900
sb 4+ 100s% + 60053 4+ 150052 + 1800s + 900

Step response of the reference model H(s)

H(s) =

N




Stable Plant
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Unstable Plant

|
346524 11s—6
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Systems with Time Delay
Add a delay of 0.03 second before

|
s34+ 6524 11s+6
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Nonlinear Systems

;}‘.'1 = —I -+ “5' Hi]l(;i?l) + 1y
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Y4 = 3.
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Conclusions

* The B-L-algorithm is mathematically
equivalent to the C-B-algorithm, but has many
advantages in terms of implementation and
biological plausibility.

* The B-L-algorithm can be generalized from
neural networks to general systems, making
them capable of learning just like neural
networks.

* One practical application is to model reference
adaptive PID control.
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